
1

VMMC Communication Model

Windows NT User’s Guide
and

API Reference

Version 2.0

The Shrimp Project

Department of Computer Science
Princeton University

February 1999

2

About this Document

Welcome to VMMC! The goals of this document are threefold:

1. An introduction to the VMMC model.

2. How to use and manage VMMC on a Windows NT cluster.

3. A description of the VMMC programming model as well as a programmer’s reference for
the VMMC API.

Users of VMMC are encouraged to join the email list used for VMMC announcements. Join the list to keep
up with the latest VMMC developments. To join the email list, send a message to
majordomo@cs.princeton.edu with “subscribe vmmc-announce youremail@yourcompany.com” in the
body of the message. Email traffic is minimal.

We welcome input about functionality, bugs, and possible extensions to the API. Please send your
comments or questions to vmmc-help@cs.princeton.edu. For more information on The SHRIMP Project
(including technical papers) please visit our web site at http://www.cs.princeton.edu/shrimp.

3

Contents

VMMC COMMUNICATION MODEL ... 1

ABOUT THIS DOCUMENT... 2

CONTENTS .. 3

INTRODUCTION .. 5

Changes in Version 2.0... 6

ADMINISTRATOR’S GUIDE.. 7

1. VMMC System Root Directory .. 7
2. VMMC System Account and Network Share... 7
3. Starting and Stopping VMMC.. 7
4. VMMC Cluster Service and Utilities.. 8
5. Enabling Interactive Jobs.. 8
6. System Log Files .. 8

USER’S GUIDE.. 9

1. Installing the VMMC SDK... 9
2. VMMC Session Creation and Deletion .. 9

Using CFGVMMC.EXE.. 10
3. Running VMMC Programs... 11

Running programs on a VMMC Node .. 11
Running programs using CFGVMMC .. 11

4. Output Logging... 12
5. Sample VMMC Programs... 13

Basics.. 13
Simple Examples... 13
Two Node Bandwidth Curve Examples... 13
Multi-node Examples .. 14

PROGRAMMING MODEL.. 15

1. VMMC Overview... 15
2. Cluster Organization ... 16
3. Receive Buffers... 16
4. Importing Receive Buffers.. 16
5. Destination Proxy Space (DestSpace)... 17
6. Data Transfer .. 17
7. Transfer Redirection ... 17
8. Notifications ... 20
9. Removal of Import-Export Link ... 21

VMMC API REFERENCE.. 22

VMMC Data Types .. 23
VMMC Return Values.. 24
vmmc_AllHosts() ... 26
vmmc_AsyncStatus().. 27
vmmc_BlockNotifications() ... 28
vmmc_ClearDataEnd() ... 29
vmmc_DataEnd().. 30
vmmc_EndRedir() .. 31

4

vmmc_EqualNodes() .. 32
vmmc_ErrorStr()... 33
vmmc_ExportRecvBuf()... 34
vmmc_GetData() .. 35
vmmc_GetDataAsync() .. 36
vmmc_ImportRecvBuf()... 37
vmmc_ImportRecvBufAsync()... 38
vmmc_ImportRecvBufStatus() ... 39
vmmc_MyHostName() ... 40
vmmc_MyNode() ... 41
vmmc_MyPid()... 42
vmmc_NameToNode() ... 43
vmmc_NodeToName() ... 44
vmmc_PageSize() ... 45
vmmc_Parent() ... 46
vmmc_PostRedir() .. 47
vmmc_SendData() .. 48
vmmc_SendDataAsync() .. 49
vmmc_SendDataAsyncNotify().. 50
vmmc_SendDataNotify().. 51
vmmc_SessionHosts() .. 52
vmmc_SetDebugLevel() ... 53
vmmc_Spawn()... 54
vmmc_UnblockNotifications() ... 55
vmmc_UnexportRecvBuf() .. 56
vmmc_UnimportRecvBuf() .. 57
vmmc_Version() ... 58
vmmc_WordSize().. 59

INDEX ... 60

5

Introduction

The SHRIMP Project at Princeton University studies ways to integrate commodity desktop computers, such
as PCs and workstations, into inexpensive, high-performance multicomputers. The goal is to build an
inexpensive system from off-the-shelf components with minimal custom-designed hardware. Ideally, such
a system would offer a performance competitive with, or better than, the performance of specially designed
multicomputers for both message passing and shared-memory programming models.

During the course of our research we found that the network interfaces (NI) of existing multi-computers
and workstation networks introduce large software overheads for communication. The main reason for this
overhead is that these network interfaces require a significant number of instructions at the operating
system and user levels to provide protection and buffer management. Motivated by this fact, we designed
and built two custom network interfaces (SHRIMP1-I and SHRIMP-II) for low-latency, high-bandwidth
user-to-user communication. These network interfaces implement our model of user-level communication
called VMMC (virtual memory-mapped communication) which provides direct data transfer between the
sender’s and receiver’s virtual address spaces. Additionally, this model eliminates operating system
involvement in communication, provides full protection, supports user-level buffer management, zero-copy
protocols, and minimizes software communication overhead.

We also wanted VMMC to enable the creation of libraries implementing a variety of new and old APIs for
parallel and distributed programming. Examples of such libraries include message-passing APIs like PVM,
NX/2, distributed shared-memory, and client-server APIs like RPC and stream sockets.

The introduction of commodity programmable network interfaces enabled us to transfer most of the
functionality of our custom network interface to off-the-shelf NI hardware. We achieved this by
implementing support for our user-level communication model in the NI firmware. The firmware together
with a device driver and a user-level library implement the VMMC communication model.

A p p l i c a t i o n s / C o m m u n i c a t i o n L i b r a r i e s

V M M C
D e v i c e D r i v e r

V M M C F i r m w a r e
N e t w o r k
I n t e r f a c e

H o s t

V M M C
U s e r - L e v e l L i b r a r y

Figure 1. The components of VMMC

1 SHRIMP is an acronym for Scalable High-performance Really Inexpensive Multi-Processor

6

Changes in Version 2.0

Version 2.0 of VMMC includes many improvements to the original VMMC release. Briefly, the
improvements are:

• The API functions are renamed to begin with “vmmc_”.

• The VMMC data types were changed and renamed for consistency.

• A transfer redirection mechanism was added to enable true zero-copy protocols.

• The API now supports remote data fetch.

• The network interface firmware was extended to support reliable data transfer using link-level
retransmission.

7

Administrator’s Guide

This section describes the VMMC system file layout on each cluster node, VMMC cluster services, and
how to start and stop VMMC. To run the commands described in this section the administrator must log in
as VMMC. Note that the VMMC account has administrative privileges.

1. VMMC System Root Directory

The VMMC system installation sets up a VMMC system root directory on each cluster node. The VMMC
root is %SystemRoot%\vmmc by default. On most Windows NT, the %SystemRoot% is C:\WinNT.
The VMMC system root directory contains all necessary files for running VMMC services. The directory
structure is as follows:

%SystemRoot%\vmmc:
driver\ contains vmmcdrv.sys (VMMC device driver)
server\ contains vmmcsvr.exe (VMMC Cluster Server)
bin\ contains utilities and the firmware loader

Mload.exe, MCPStart.bat, MCPStop.bat
mcp\ contains Myrinet firmware code: mcp4.dat
logs\ system log files: server.log and driver.log
vmmc-hosts.txt a text file that lists all VMMC nodes in the cluster

During the VMMC system software installation the VMMC root directory is exported as a network share
with a share name VMMC. This is done to simplify the remote administration of the VMMC cluster. On a
Windows PC, the administrator can update the VMMC system files or check the VMMC logs by simply
accessing a node’s exported VMMC folder. For example,

NET use \\node1\vmmc vmmc /user:vmmc # login as vmmc
TYPE \\node1\vmmc\logs\server.log # view server log file

2. VMMC System Account and Network Share

During VMMC system installation, a local account vmmc is created on each cluster node. We have chosen
vmmc as the password for this account. An administrator can modify the password using Windows NT’s
User Manager. However, the administrator must make sure that the VMMCSVR service can still run under
the local vmmc account. The Service Control Manager (invoked from the Control Panel) can be used for
this purpose.

The home directory for the vmmc account is %SystemRoot%\vmmc. If UWIN is installed on the cluster
node, the .rhosts file must be located in this directory in order for the rsh service to work properly.

3. Starting and Stopping VMMC

The low-level components of VMMC include the device driver VMMCDRV and the Myrinet firmware
mcp4.dat. To enable VMMC, the administrator must perform the following two tasks in order: (1) start the
VMMC device driver and, (2) load the Myrinet firmware.

8

To start the VMMC device driver, the administrator can invoke the NET command from a command shell
(DOS shell) as follows:

NET start VMMCDRV

After the driver is successfully started, the administrator can load the VMMC firmware into the Myrinet
network interface, using the MPCSTART script. The MCPSTART script is located in the bin/ folder under
VMMC system directory. In the same folder, there exists an MCPSTOP script that the administrator can
use to disable the Myrinet network interface.

C:\> CD %SystemRoot%\VMMC
C:\WINNT\VMMC> CD bin
C:\WINNT\VMMC\bin> MCPStart.BAT

4. VMMC Cluster Service and Utilities

Once the VMMC system is successfully started on each cluster node, the user can run VMMC programs
using Myrinet. An integral part of VMMC is its API for remote process creation. This API includes
vmmc_Spawn(), vmmc_Parent(), and others. The remote process creation is implemented by the
VMMC Cluster Service, VMMCSVR. The VMMCSVR also provides basic support for process management
and output logging. An instance of VMMCSVR runs as a Windows NT service on each VMMC Cluster
node. It is automatically started during the system boot time.

5. Enabling Interactive Jobs

The user must log on to each VMMC cluster node using the vmmc account, before he or she can run any
interactive jobs. Otherwise, processes created by VMMCSVR will not be visible on the NT desktop. There is
a way to enable automatic logging into a local account on a Windows NT workstation. The administrator
should consult Microsoft Developer’s Network documentation for this feature.

6. System Log Files

On each VMMC cluster node, the VMMC system produces two log files, server.log and driver.log. Both
reside in %SystemRoot%\vmmc\logs directory. The server.log file contains information and error logs
from VMMCSVR, mostly regarding session and process management. The driver.log file contains logs for
the VMMCDRV device driver and the Myrinet network interface.

9

User’s Guide

In this section we give an overview of the components involved in the Windows NT implementation of
VMMC. We also describe how to run VMMC applications.

1. Installing the VMMC SDK

The VMMC SDK is distributed in zip file a named vmmc_sdk_2_0.zip. The zip contains the following
directory structure:

• include: header files needed to compile VMMC programs
• example: sample vmmc test programs
• example\bin: pre-compiled test programs
• lib: user-level library vmmc.lib and the debug version vmmcd.lib
• utils: various utilities including CFGVMMC.exe

2. VMMC Session Creation and Deletion

Prior to running VMMC programs, the user must create an active session on all VMMC cluster nodes. A
VMMC session consists of a session name, a user name, a user password, a local drive, a network share,
and an output logging directory (see Figure 2). The user must specify a non-empty string for the session
name. The string can be of any characters. The session name is unique on any VMMC cluster node.

Each session requires a file system drive on which the VMMCSVR sets a new process’ current working
directory2. The current working directory is a full path relative to the drive, without the drive letter
attached. The drive can be either a local disk drive (e.g., C:) on the node, or represent a mounted network
share. In the latter case, the user must specify a network share using Uniform Naming Convention (e.g.,
\\FileServer\vmmc) during session creation. However, the user need not specify a drive letter for
mounting a network share. VMMCSVR can select an available drive letter to use. Furthermore, the drive
letter for a given session need not be the same on all nodes. VMMCSVR keeps track of the drive letter for
each session and sets a process’ working directory accordingly when creating processes.

When a user deletes a session, all processes created within the session are killed automatically by
VMMCSVR. The network share is also dismounted during session destruction.

2 Mounting the network share on the local drive is necessary because the NT operating system cannot use a
UNC (Uniform Naming Convention) path as a process’ working directory.

10

VmmcSvr

session-1

session-2

session-N

session: session-2
drive: Z:
remote: \\FS\VMMC
logdir: \vmmclogs

c: \\FS\VMMC on Z:

Figure 2. An example VMMC session

Using CFGVMMC.EXE

The VMMC SDK distribution supplies a utility program, CFGVMMC.EXE (in the sdk\utils directory),
for creating and deleting sessions. CFGVMMC runs on any Windows NT workstation, including non-VMMC
cluster nodes. It communicates with VMMCSVR services using Windows NT RPC mechanism.

Syntax:
CFGVMMC hostname add session user password drive netShare outDir
CFGVMMC hostname del session

Where:

session a non-empty string of characters

user a string, it can be empty, e.g., vmmc or “”

password a string, and could be empty, e.g., vmmcrulz or “”

drive a two-letter drive name (e.g., Z:) or the character ‘-’ in which case VMMCSVR
allocates the drive

netShare a UNC path for a network share, e.g., \\fs\test or a null string “”

outDir a string representing the absolute path for the Output logging directory, e.g.,
\vmmcout. It cannot be an null string.

Examples:

CFGVMMC node1 add TestSession guest passwd K: \\FS\Guest \tmp
mounts \\FS\Guest on K: using passwd for account guest

11

CFGVMMC node1 add TestSession guest passwd - \\FS\Guest \tmp
VMMCSVR selects a drive to mount \\FS\Guest

CFGVMMC node1 add TestSession “” “” F: “” \tmp
F: is either a local disk drive or an already-mounted drive

CFGVMMC node1 del TestSession

3. Running VMMC Programs

Once an active VMMC session is established, the user can run VMMC programs either directly on the
VMMC nodes or create them remotely from a non-VMMC PC using the CFGVMMC utility program. But
the first thing the user needs to do is set two environment variables: VMMCSESSION and VMMCHOSTS.
This can be done with the SET command in a Windows command shell:

Z:\> Set VMMCHOSTS=node1 node2 node 3 node4
Z:\> Set VMMCSESSION=TestSession

VMMCSESSION informs the VMMC program of the session it belongs to. VMMCHOSTS tells the
VMMC program how many nodes are available. The list of available nodes can be retrieved by a call to
vmmc_SessionHosts() .

Running programs on a VMMC Node

On a VMMC node, the user can then run VMMC programs directly from the command shell. The user
should have already created an active session on all the nodes where the user intends to create VMMC
processes. Assuming the user uses drive X as the session drive, the following steps are required to run a
VMMC program:

C:\>X:
X:\>Set VMMCHOSTS= u2 ledzep sade

X:\>SET VMMCSESSION=BLAH

X:\>CD mytestdir
X:\mytestdir>testvmmc.exe

Running programs using CFGVMMC

The user can also create VMMC processes remotely from a non-VMMC PC, using the CFGVMMC utility.
This program can be found in the sdk/utils directory of the VMMC-SDK distribution. CFGVMMC uses RPC
to communicate with the VMMCSVR service running on each VMMC node for process creation and
destruction.

Syntax:
CFGVMMC hostname run session workingDir programPath [args]
CFGVMMC hostname kill session [pid]

Where:
session the name of an active session

workingDir the absolute path name of the working directory,e.g., \mytest\bin

12

programPath the path name for the executable program, it can be either relative to the
working directory, e.g., test.exe, or absolute, e.g.,
\mytest\bin\test.exe. The suffix, .exe or .bat, cannot be omitted.

Examples:

Suppose under the network share \\FileServer\vmmctest, there are two directories:
• bin\ which contains executables
• tmp\ for output logging

Under bin, there is a VMMC program, TEST.EXE with syntax:
TEST.EXE arg1 arg2

CFGVMMC node1 run TestSession \ \bin\test.exe arg1 arg2
run test.exe with \ as the working directory

CFGVMMC node1 run TestSession \bin test.exe arg1 arg2
run test.exe with \bin as the working directory

CFGVMMC node1 kill TestSession
kill all programs created in TestSession

CFGVMMC node1 kill TestSession 123
kill process with Pid=123 in TestSession

4. Output Logging

The output of VMMC processes that are created by VMMCSVR can be redirected to text files. To enable
this feature, the user must specify a directory (the output logging directory) to store the redirected output
logs, when creating a session. The output of each VMMC process is recorded in a file in the logging
directory. The file name is a concatenation of the fixed string “VMMC”, the name of the node on which the
process is created, and the process’ logical PID. The logical PID of a process is allocated by VMMCSVR.
For example, the process with a logical PID xyz on node1 will have an output logging file:
VMMC_node1.xyz.

Processes spawned by a common parent (or grandparent) process are grouped into a run group. The run
group ID is assigned by VMMCSVR when creating the first process (the lead) in the group. This lead
process is the one that user starts from a command shell on a VMMC node, or the one that user creates
remotely using the CFGVMMC utility. Subsequent processes spawned by this lead process inherit the run
group ID.

The names for all output logging within a run group are recorded in an output control file. Its file name is a
concatenation of the session name and the run group ID, e.g., TestSession_11. An example of an output
control file is as follows:

#
VMMC Output Control For Session [test] Run #11 User []
#

VMMC_NODE1 11 # HOST=NODE1 REALPID=66 TIME=1999/ 2/14-15:25

VMMC_NODE2 12 # HOST=NODE2 REALPID=337 TIME=1999/ 2/14-13: 6

Each process in the run group is represented on a line after the comments. The syntax for each line is:

13

VMMC_nodename LogicalPid # comments

In the above example, there are two processes created in this group. One on node2, with logical PID 11
and real PID 233. The output logging file for this process is VMMC_node2.11 in the logging directory.

5. Sample VMMC Programs

This section describes the example programs that come with the VMMC release. The pre-compiled sample
programs can be found in SDK/example/bin directory.

Basics

The programs we provide all manage process creation themselves. The user only needs to run the program
on a single VMMC node. The program will create the appropriate number of processes on remote VMMC
nodes, using vmmc_Spawn().

Most programs only spawn remote processes on nodes that are listed in the VMMCHOSTS environment
variable. The user needs to set this environment variable before running a program:

SET VMMCHOSTS = node1 node2 node3

Simple Examples

• spawn.exe [level]

This program spawns itself on a remote node with level-1. The default level is 1. The recursion
terminates when level reaches 0. The program tests the VMMC cluster server’s spawn facility.

• latency.exe numberofwords numberofiterations

This program measures the single-message Ping-Pong latency between two VMMC nodes.

• all2all.exe method numberofnodes numberofwords numberofiterations
where: method = pairwise or random

This program measures the all-to-all communication bandwidth among a number of VMMC nodes. At
each iteration, every process on each node sends a number of words to the other processes in either
random or pairwise order.

Two Node Bandwidth Curve Examples

This family of programs shares the same command line syntax:

<progname> <iterations> <start_nwords> <end_nwords>

These programs report the bandwidth of a particular communication pattern. The initial message size is
<start_nwords> which doubles until it reaches the final size <end_nwords>. Each message size test

14

is repeated for a number of <iterations>. For example, to test the message size sequence 1, 2, 4, ...,
1024, with 10,000 iterations at each message size, use the command: <progname> 10000 1 1024

• PPBandwidth: average bandwidth of ping-pong communication between 2 nodes.

• OnewayBandwidth: average bandwidth of one node continuously pumping data to the other.

• BidirBandwidth: average bandwidth for two nodes sending data the each other simultaneously.

• FetchBandwidth: average bandwidth of one node fetch data from the other continuously.

Multi-node Examples

This family of examples share the same command line syntax:

<prog_name> <num_nodes> <nwords> <iterations>

These programs’ communication pattern involves communication between all node involved. The program
runs on <num_nodes> contiguous nodes started from the master node, from which the command is
issued, according to the order of hosts returned by vmmc_SessionHosts(). Each message involves
<nwords> words. They can be used to test the connectivity among node.

• RandomChain: The pattern is A->B, B->C, C->D, ..., X->A
 all nodes are chosen and repeated randomly except that A is the master node.

• RandomOne2All: The pattern is A->others, others->B, B->others, others->C,, others->A
 all nodes are chosen and repeated randomly except that A is the master node.

• RandomAll2All: The pattern is All->All, All->All, until <iterations> times

15

Programming Model

1. VMMC Overview

Virtual memory-mapped communication is a model for protected user-level data transfer from the sender’s
virtual address space to the receiver’s virtual address space. Communication is protected because data
transfer can take place only after the receiver gives the sender permission to transfer data to a given area of
the receiver’s virtual address space. The receiving process expresses this permission by exporting areas of
its address space as receive buffers where it is willing to accept incoming data. A sending process must
import remote buffers (that are used as handles) which specify the available remote destinations. An
exporter can restrict which processes and hosts can importer a buffer (i.e. send it data). VMMC enforces
the restrictions when a process attempts to import a buffer (i.e., acquire a handle to the remote process’s
memory). After a successful import, the sender can transfer data from its virtual memory to the imported
receive buffer. VMMC makes sure that transferred data does not overwrite addresses outside the buffer
specified by the receiver.

0x00000000

0xFFFFFFFF

virtual address
space

physical
memory

0x00000000

virtual address
space

physical
memory

0xFFFFFFFF

data flow

exported receive buffer user buffernetwork interfaceNI

NI

NI

Receiving Process Sending Process

Figure 3. Virtual Memory Mapped Communication

VMMC supports two data transfer modes: deliberate update and automatic update. Automatic update is
only available on SHRIMP network interfaces and will not be discussed here. Deliberate update is an
explicitly initiated transfer of a contiguous block of data from any (readable) virtual address of the sending
process to a previously imported receive buffer that represents a virtual address range of the receiving
process (see Figure 3). The vmmc_SendData*() family of functions are used transfer data in this
fashion. VMMC also allows data to flow in the opposite direction, this is accomplished using the
vmmc_GetData*() family of functions. Note that VMMC guarantees in-order, reliable delivery of
deliberate update messages.

When a message arrives at its destination, it is transferred directly into the memory of the receiving
process, without interrupting the receiver's CPU. Thus there is no explicit receive operation in VMMC.

16

VMMC supports user-level buffer management because data transfer is performed between user-level
memory locations. Buffer management is divorced from the data movement mechanism and becomes the
responsibility of the communicating parties. Zero-copy protocols are possible because data transfers occur
directly between applications.

The CPU overhead to send data is very small, only a few user-level instructions are needed for deliberate
update. The model does not impose any CPU overhead to receive data, as there is no explicit receive
operation. CPU involvement in receiving data can be as little as checking a flag; moreover program logic
can be used to reason about what data has already arrived (since messages are delivered in order).

The model as described in this section can be applied to communication between processes executing on
one uniprocessor machine, on separate processors of a shared memory multiprocessor, or between
processes executing on different nodes in a local area network. In the former two cases, VMMC is a special
restricted case of shared memory communication with deliberate update added for bulk transfer. The LAN
case is discussed in the next section.

2. Cluster Organization

The VMMC cluster is a set of nodes. Each node is identified with a unique node identifier of type
vmmc_node_t. The calls vmmc_SessionHosts() and vmmc_AllHosts() are used to obtain the
identification of nodes in the VMMC cluster. While vmmc_MyNode() returns the id for the node of the
calling process. vmmc_MyPid() returns the pid of a calling process. Note that full process identification
is a (vmmc_node_t, vmmc_pid_t) pair.

User address space is divided in VMMC pages, which size is returned by vmmc_PageSize() (currently
4096 bytes). Each VMMC page contains integer number of VMMC words. The size of a VMMC word is
returned by vmmc_WordSize()(currently 4 bytes).

3. Receive Buffers

Communication in the VMMC model is based on receive buffers. A receive buffer is a contiguous region of
process virtual memory. Other processes can directly send data to, or fetch data from, a receive buffer.
Each receive buffer is identified with user-selected buffer id (uint32). A receiver process makes a receive
buffer available to senders with the vmmc_ExportRecvBuf() call. The buffer id must be unique among
all ids of receive buffers exported by a given process. Receive buffers cannot overlap.

4. Importing Receive Buffers

A sender process has to import a given receive buffer before it can send any data. The import operation is
implemented with the vmmc_ImportRecvBuf() call. Import succeeds only after the corresponding
export call has been completed for this receive buffer (on the other node). There is also an asynchronous
version of the import call, vmmc_ImportRecvBufAsync(), which issues only an import request and
returns immediately returning a handle to the outstanding request. The progress of an asynchronous import
request is verified with vmmc_RecvBufStatus().

For a given process, ids of exported and imported buffers belong to two disjoint name spaces. As a result,
one buffer id can be used in both export and import calls. However, for a given process, ids of exported
buffers have to be unique. The full identification of an imported buffer is not its buffer id, but a triple

17

(uint32:bufid, vmmc_node_t, vmmc_pid_t). As a result it is possible to import two buffers
with the same buffer id, if two different processes exported them.

With one export call, a process can export exactly one receive buffer to potentially unlimited number of
processes. With one import call, a process can import only one receive buffer.

We say that a successful import establishes an import-export link between a remote receive buffer and the
local DestSpace. Establishing an import-export mapping requires a trusted third party (operating system
kernel or daemon process) to verify protection. Therefore, creating mappings can be relatively expensive.
However, it should occur infrequently, as import is required only once for a given receive buffer; afterward
messages can be sent directly from user-level.

5. Destination Proxy Space (DestSpace)

Destination proxy space (DestSpace for short) is an imaginary address space in each sender process; it is
used to represent remote imported receive buffers. An imported remote receive buffer is represented by an
equal size contiguous region in DestSpace. In particular, an application can use pointer arithmetic on
address in DestSpace. However, DestSpace is not backed by local memory and its addresses do not refer to
local data or code. Instead, they are only used to specify destinations for remote data transfers (i.e. they act
as handles to destination buffers). An address in DestSpace is translated by VMMC into a destination
machine, process, and virtual address.

6. Data Transfer

Data transfer can occur from anywhere in a sender’s virtual memory to a previously imported receive
buffer. The vmmc_SendData*() family of functions are used to initiate communication on the sender's
side. vmmc_SendData() takes as arguments an address in DestSpace, which identifies receive buffer to
be used, a local address which identifies data to be send, and nwords which gives the size of the message.
If no error occurs, vmmc_SendData() returns after all data has been sent out to the network.

VMMC also provides a non-blocking variant of vmmc_SendData() called
vmmc_SendDataAsync(). The non-blocking send is designed to minimize the CPU overhead required
to start a data transfer. The progress of an asynchronous send request is verified with
vmmc_AsyncStatus().

vmmc_GetData() and vmmc_GetDataAsync() are similar except that the direction of data flow is
reversed. That is, a process can fetch data from a remote node.

7. Transfer Redirection

The basic virtual memory-mapped communication model provides protected, user-level communication to
move data directly from a send buffer to a receive buffer without any copying. Since it requires the sender
to know the receiver buffer address, it does not provide good support for connection-oriented high-level
communication APIs.

VMMC includes a mechanism called transfer redirection. The basic idea is to use a default, redirectable
receive buffer when a sender does not know the final receive buffer addresses.

18

Redirection is a local operation affecting only the receiving process. The sender does not have to be aware
of a redirection and always sends data to the default buffer. When the data arrives at the receive side, the
redirection mechanism checks to see whether a redirection address has been posted. If no redirection
address has been posted, the data will be moved to the default buffer. Later, when the receiver posts the
receive buffer address, the data will be copied from the default buffer to the receive buffer, as shown in
Figure 4a.

user
bufferuser

buffer

(a) A copy takes place when the receiver posts its
buffer address too late

default
buffer

network memory
copy

Sender Receiver

user
bufferuser

buffer

(b) Transfer redirection moves data directly from the
network to the user buffer

default
buffer

network

Sender Receiver

Figure 4. Transfer Redirection

If the receiver posts its buffer address before the message arrives, the message will be put into the user
buffer directly from the network without any copying, as shown in Figure 4b. If the receiver posts its
buffer address during message arrival, the message will be partially placed in the default buffer and
partially placed in the posted receive buffer. The redirection mechanism tells the receiver exactly how
much and what part of a message is redirected. When partial redirection occurs, this information allows the
receiver to copy the part of the message that is placed in the default buffer.

There are two calls a receiver uses for transfer redirection on a redirectable buffer. The first is:

(vmmc_result_t) res = vmmc_PostRedir(vmmc_exphandle_t bufHandle,
 uint32 redirOffset,
 uint32 numWords,
 int32 *userBuf)

where bufHandle is a handle to an exported buffer, redirOffset is the buffer’s word offset from
which to initiate redirection, numWords is the number of words to redirect, and userBuf is the
destination for the redirected data. This call posts a transfer redirection at user level and currently at most
one redirection can be posted for a receive buffer.

The second call is:

19

(vmmc_result_t) res= vmmc_EndRedir(vmmc_exphandle_t bufHandle,
uint32 *numWordsPtr,
uint32 *firstWordOffsetPtr)

where bufHandle is a handle identifying an exported redirectable buffer, numWordsPtr is the number
of words that were redirected to the user buffer, and firstWordOffsetPtr is the index of the first
word that was redirected to the user buffer. This call terminates the transfer redirection posted to the
redirectable buffer. If no data has been redirected, the number of redirected words is zero. If a redirection
did happen, the redirected data is in the contiguous user address-space area that starts at address
userBuf + *firstWordOffsetPtr and continues for *numWordsPtr words (see Figure 5).

bufhandle

redirOffset

numWords

userBuf

(a) vmmc_PostRedir()

* firstWordOffsetPtr=0
* numWordsPtr=0

*firstWordOffsetPtr
*numWordsPtr

*firstWordOffsetPtr

*numWordsPtr

(b) vmmc_EndRedir()

(i) No Redirection

(ii) Partial Redirection

(iii) Full Redirection

Figure 5. vmmc_PostRedir() and vmmc_EndRedir()

The transfer redirection mechanism naturally extends the basic communication model and it is very simple.
It is controlled entirely by the receiver side; the sender does not need to know what the actual destination
address is, nor whether a transfer redirection takes place.

Our implementation allows redirection to happen at most once for each vmmc_PostRedir(). As soon
as a message is redirected from a redirectable buffer to a receive buffer, it ends the redirection
automatically. We choose this design to simplify vmmc_EndRedir(). Otherwise, it would have to
return multiple redirection regions.

Transfer redirection is designed for a single pair of sender and receiver processes. This design decision is
based on the fact that most connection-based high-level APIs deal with a single pair of sender and receiver
per connection. To avoid interleaving messages from different senders, a redirectable receive buffer should
be imported by just one sender which is easy to enforce when the buffer is exported. If one really needs to
support multiple senders and the communicating processes trust each other, a high-level protocol can be
used to ensure that only one sender sends a message to a redirected buffer at a time.

20

How much data is actually redirected depends on the relative timing of vmmc_PostRedir() call and
data arrival time, assuming vmmc_EndRedir() does not interfere with data redirection. If a redirection
is posted before message arrival, the data will be redirected. If a redirection is posted after data starts
arriving but before its transfer finishes, the remainder of arriving message will be redirected.

For redirectable receive buffers, VMMC provides additional functionality to help user processes figure out
data arrival. When last chunk of a message arrives, a receive-buffer specific memory location in user space
is updated with the receive buffer offset corresponding to the last word transferred. This word index is
available to users via the vmmc_DataEnd() call.

8. Notifications

When sending a message we have the choice of transferring data only or data and control. The mechanism
we use to transfer control is called a notification. Notifications are similar to UNIX signals. When a
message with a notification attached arrives at destination receive buffer a user-level notification handler is
invoked after the message data in user memory.

Handlers can be associated with receive buffers during the export operation. Each receive buffer can have
zero or one handler. If a message with a notification arrives at receive buffer with no handler attached, this
notification has no effect. vmmc_SendDataNotify() sends message with notification in deliberate
update mode. This call takes the same arguments as vmmc_SendData().

Each handler has the same function signature (i.e. number and type of arguments). The first argument is the
address of the last word of data transferred by the message that generated this notification, the second
argument is the value of this word. Since VMMC continues to receive incoming messages between the
arrival of a message with notification and the call to the associated user handler, the data of a notification
message can be overwritten by subsequent messages even before the handler is called. However, VMMC
makes sure that the handler is called and passed the virtual address and value of the last word in the
message that invokes the notification.

VMMC provides two calls: vmmc_BlockNotifications() and
vmmc_UnblockNotifications() to control the delivery of notifications. Blocking notifications is
useful to ensure consistency of data structures modified by both user-level handlers and main thread of
execution. Blocking notifications is global, i.e. it affects all receive buffers of a given process. When
notifications are blocked, they are queued by the system. After they are unblocked, they are delivered in-
order to the appropriate user-level handlers. Since there is limited space to store queued notifications, they
should not be blocked for too long.

For each vmmc_BlockNotifications() there should be a call to vmmc_UnblockNotifications().
Pairs of these calls can be nested. vmmc_UnblockNotifications() unblocks notifications only if it
is called at the first nesting level. In this case, the call returns a positive integer, otherwise it returns zero.
To make sure that notifications are unblocked unconditionally, one can call
vmmc_UnblockNotifications() in the loop until it returns positive integer. If notifications are
unblocked, further calls to vmmc_UnblockNotifications()have no effect.

While user-level notification handler is executing, notifications remain blocked. Notification handler
should not block or wait spinning. Not all VMMC calls can be used from within notification handler. Both
vmmc_BlockNotifications() and vmmc_UnblockNotifications() can be called from
within the handler, provided they are paired. However, any attempt to unblock notifications

21

unconditionally by repeated calls to vmmc_UnblockNotifications() will eventually return an error
(as notifications must remain blocked within a handler).

9. Removal of Import-Export Link

There are two calls provided to undo export and import operations. The importer of a given buffer executes
vmmc_UnimportRecvBuf(). This call undoes a previous vmmc_ImportRecvBuf() call by
breaking the connection to the remote receive buffer, and de-allocating the local DestSpace mappinsg.

vmmc_UnexportRecvBuf() undoes a previous call to vmmc_ExportRecvBuf(). All existing
connections to the buffer are forcibly broken, and the buffer is made unavailable for further connections. In
particular all importers of this buffer can no longer send any data to this buffer after this call completes.

NOTE: these calls are not implemented.

22

VMMC API Reference

This section describes all of the VMMC calls that are available to user applications.

VMMC Data Types----------------------23

VMMC Return Values ------------------24

vmmc_AllHosts() ------------------------26

vmmc_AsyncStatus()--------------------27

vmmc_BlockNotifications()------------28

vmmc_ClearDataEnd()------------------29

vmmc_DataEnd() ------------------------30

vmmc_EndRedir() -----------------------31

vmmc_EqualNodes() --------------------32

vmmc_ErrorStr() -------------------------33

vmmc_ExportRecvBuf()----------------34

vmmc_GetData()-------------------------35

vmmc_GetDataAsync() -----------------36

vmmc_ImportRecvBuf()----------------37

vmmc_ImportRecvBufAsync()--------38

vmmc_ImportRecvBufStatus() --------39

vmmc_MyHostName()------------------40

vmmc_MyNode() ------------------------41

vmmc_MyPid()---------------------------42

vmmc_NameToNode()------------------43

vmmc_NodeToName()------------------44

vmmc_PageSize()------------------------45

vmmc_Parent() ---------------------------46

vmmc_PostRedir() -----------------------47

vmmc_SendData() -----------------------48

vmmc_SendDataAsync() ---------------49

vmmc_SendDataAsyncNotify() -------50

vmmc_SendDataNotify() ---------------51

vmmc_SessionHosts()-------------------52

vmmc_SetDebugLevel() ----------------53

vmmc_Spawn()---------------------------54

vmmc_UnblockNotifications() --------55

vmmc_UnexportRecvBuf() ------------56

vmmc_UnimportRecvBuf() ------------57

vmmc_Version() -------------------------58

vmmc_WordSize()-----------------------59

23

VMMC Data Types

The section gives a brief overview of the various data types needed by the VMMC programmer.

• int32: 32-bit integer

• uint: unsigned integer

• uint32: unsigned 32-bit integer

• ulong: unsigned long integer

• vmmc_callback_t: specifies the type for a user-level function that can be invoked when data
arrives. The function must be defined as
void (*vmmc_callback_t) (int32*, int32)

• vmmc_exphandle_t: a handle type to keep track of exported buffers

• vmmc_imphandle_t: a handle type to keep track on imported buffers

• vmmc_perm_t: a type that specifies an export buffer’s permission

• vmmc_node_t: a type used to store node identification

• vmmc_pid_t: a type used to store VMMC PIDs

• vmmc_async_handle_t: a type of handle used to keep track of outstanding asynchronous requests.

24

VMMC Return Values

Most VMMC calls return the type vmmc_result_t. Negative integer indicates an error, while zero means no
error occurred. Errors can be reported with vmmc_Error().

The following return values are possible:

• vmmc_Success: the call completed successfully (the constant 0)

• vmmcErr_BadAlignment: newly created buffer is not aligned to VMMC word boundary;
or send or destination address is not aligned to such boundary.

• vmmcErr_BufAlreadyExists: receive buffer with a given buffer id already as been exported

• vmmcErr_BadIbufState: imported receive buffer is in bad state

• vmmcErr_BadRbufState: exported receive buffer is in bad state.

• vmmcErr_BadProxyExtension: exported receive buffer is in bad state.

• vmmcErr_BadProxyAddr: proxy address does not belong to imported receive buffer (or
first and last proxy addresses specified by
vmmc_SendData() do not belong to the same imported
receive buffer).

• vmmcErr_BadSize: number of words to be sent is not positive

• vmmcErr_BadArg: number of

• vmmcErr_NotImplemented: number of words to be sent is not positive

• vmmcErr_UnblockedNotifications: block

• vmmcErr_BlockedNotifications: blocked notifications lead to deadlock. This happens when we
want to unexport a buffer with pending notifications that are
blocked.

• vmmcErr_NoPhysDestSpace: no more destination space

• vmmcErr_NoVirtDestSpace: no more destination space

• vmmcErr_NoMem: VMMC cannot allocate memory

25

• vmmcErr_NoSuchNode: bad node id

• vmmcErr_NoSuchProcess: bad process id

• vmmcErr_NotInHandler: this call cannot be used from within notification handler

• vmmcErr_OverlappedBufs: new receive buffer would overlap with existing buffer

• vmmcErr_InProgress: an asynchronous send or get request is pending

26

vmmc_AllHosts()

Returns the node information of all hosts in the VMMC cluster. This includes hosts that may not be part of
the user’s current session (see vmmc_SessionHosts()).

Synopsis:

(vmmc_result_t) res = vmmc_AllHosts (uint32 *nhosts, vmmc_node_t **hosts)

Parameters:

OUT uint32 *nhosts: returns the number of hosts

OUT vmmc_node_t **hostIds: returns an array of nhosts host ids

Description:

vmmc_AllHosts() returns all the nodes of the VMMC cluster, where hosts points to an array of
vmmc_node_t. The size of the array is nhosts. Once a user program is started, nodes should not be
added or deleted. The hostIds array should not be freed or written by user program.

Returns:

• vmmc_Success

• negative error code on failure

27

vmmc_AsyncStatus()

Returns the status of an asynchronous request.

Synopsis:

(vmmc_result_t) res = vmmc_AsyncStatus (vmmc_async_handle_t *handle)

Parameters:

IN vmmc_async_handle_t *handle: a handle identifying an outstanding asynchronous request

Description:

vmmc_AsyncStatus() returns the status of an asynchronous request initiated with either
vmcc_SendDataAsync(), vmcc_SendDataAsyncNotify() or vmmc_GetDataAsync().

Returns:

• vmmc_Success if the request has completed
• vmmcErr_InProgress if the request is still in progress
• other negative error code on failure

28

vmmc_BlockNotifications()

Blocks delivery of notifications.

Synopsis:

(void) vmmc_BlockNotifications()

Parameters:

none

Description:

vmmc_BlockNotifications() blocks delivery of notifications to all receive buffers of a calling
process. Blocked notifications are queued and will be delivered after notifications are unblocked by a
call to vmmc_UnblockNotifications(). Each call to vmmc_BlockNotifications()
should be paired with a call to vmmc_UnblockNotifications(). These pairs can be nested, in
which case the last vmmc_UnblockNotifications() (at nesting level one) will unblock
notifications.

Notifications are automatically blocked when notification handler is called.
vmmc_BlockNotifications() can be called from within a notification handler.

Returns:

no return value

29

vmmc_ClearDataEnd()

Resets the value of the “end-of-data” word index associated with a exported redirectable buffer.

Synopsis:

(void) vmmc_ClearDataEnd(vmmc_exphandle_t bufHandle)

Parameters:

IN vmmc_exphandle_t bufHandle: a handle identifying an exported redirectable buffer

Description:

VMMC keeps track of the index of the last word sent a redirectable buffer. This word index is relative
to the start of a buffer and can range from zero to one less than the buffer size (in words).
vmmc_ClearDataEnd() resets this index to vmmcErr_NoSuchError. The index can read with
the function vmmc_DataEnd().

Returns:

no return value

30

vmmc_DataEnd()

Returns the value of the “end-of-data” word index associated with a redirectable exported buffer.

Synopsis:

(int) res = vmmc_DataEnd(vmmc_exphandle_t bufHandle)

Parameters:

IN vmmc_exphandle_t bufHandle: handle identifying an exported redirectable buffer

Description:

VMMC keeps track of the index of the last word sent to redirectable buffers. This word index is
relative to the start of a buffer. vmmc_DataEnd() returns this index for a specified buffer. If the
buffer has received no data, vmmcErr_NoSuchError is returned. The user can reset the index to
vmmcErr_NoSuchError by using vmmc_ClearDataEnd().

Returns:
• vmmcErr_NoSuchError when no data has arrived in the buffer or if the user has reset the

index with a call to vmmc_ClearDataEnd()
• a positive integer specifying the word index of the buffer where the last word was written to

31

vmmc_EndRedir()

Terminates redirection on a specified redirectable buffer.

Synopsis:

(vmmc_result_t) res = vmmc_EndRedir(vmmc_exphandle_t bufHandle,
uint32 *numWordsPtr,
uint32 *firstWordOffsetPtr)

Parameters:

IN vmmc_exphandle_t bufHandle: handle identifying an exported redirectable buffer

OUT uint32 *numWordsPtr: number of words that were redirected to the user buffer

OUT uint32 *firstWordOffsetPtr index of the first word that was redirected to the user buffer

Description:

Terminates redirection on a specified buffer. The last two arguments return the status of the
redirection. It could be that all, some, or none, of the incoming data was redirected. Use
*numWordsPtr and *firstWordOffsetPtr to determine exactly how much data was
redirected.

Returns:

• vmmc_Success (the constant 0)

• negative error code on failure

32

vmmc_EqualNodes()

Determines if two VMMC nodes are the same.

Synopsis:

(int) res = vmmc_EqualNodes(vmmc_node_t node1, vmmc_node_t node2)

Parameters:

IN vmmc_node_t node1: a VMMC node

IN vmmc_node_t node2: a VMMC node

Description:

Determines if two VMMC nodes are the same. We supply this function because vmmc_node_t is an
opaque type. The user should not access any members of vmmc_node_t.

Returns:

• 1 if the nodes are equal

• 0 if the nodes are different

33

vmmc_ErrorStr()

Returns a string describing a VMMC error code.

Synopsis:

(char *) str = vmmc_ErrorStr (int errCode)

Parameters:

IN int errCode: error code (negative integer), as returned by other VMMC calls

Description:

Returns a null terminated ASCII string describing a VMMC error code. If the string is needed longer
than the execution of the calling function it should be copied to a user character array. The user must
never free the string returned by this call.

Returns:

a character string describing the VMMC error

34

vmmc_ExportRecvBuf()

Exports a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_ExportRecvBuf (int32 *buf,
uint32 nwords,
uint32 rbufid,
vmmc_callback_t proc,
uint32 flags,
vmmc_perm_t perm,
vmmc_exphandle_t *bufHandle)

Parameters:

IN int32 *buf : address of the receive buffer

IN uint32 nwords: size of the receive buffer in words

IN uint32 rbufid: receive buffer id

IN vmmc_callback_t proc: notification handler, user-level function
 or NULL for no handler

IN uint32 flags: specify export characteristics
one of:

BUF_WRITE_ONLY buffer can only be written
BUF_READ_ONLY buffer can only be read
BUF_READWRITE buffer can be read and written

optionally OR-ed with one of:
BUF_REDIRECTABLE buffer can redirected
BUF_GLOBAL_SPACE buffer is allocated from the global buffer space

IN vmmc_perm_t perm: export permissions (not used yet)

OUT vmmc_exphandle_t *bufHandle: handle that will identify the exported buffer

Description:

Exports receive buffer for importing by senders. Note that this call does not allocate any memory. If
there is no memory allocated to back this buffer, page faults may occur.
The newly created receive buffer is identified with rbufid, and occupies memory between buf and
buf + vmmc_WordSize()*nwords - 1.
buf should be word aligned. Receive buffers cannot overlap.

Returns:

• vmmc_Success

• negative error code on failure

35

vmmc_GetData()

Fetches data from a remote exported buffer.

Synopsis:

(vmmc_result_t) res = vmmc_GetData (int32 *localDstBuf,
int32 *remoteSrcProxyAddr,
uint32 nwords)

Parameters:

IN int32 *localDstBuf: address of user buffer to place fetched data.
buffer memory must be allocated.

IN int32 *remoteSrcProxyAddr: address in local DestSpace corresponding to an imported
remote receive buffer

IN int nwords: size of the data in words

Description:

vmmc_GetData() fetches nwords from address remoteSrcProxyAddr and into the local
buffer specified by localDstBuf. vmmc_GetData() returns after the message has arrived in the
user buffer. vmmc_GetData() is the compliment of vmmc_SendData().

remoteSrcProxyAddr determines the source of the data. This is the receive buffer which proxy in
local DestSpace contains localDstBuf address. Since each DestSpace address belongs to no more
than one proxy, this identification is unique. The data will be put in the receive buffer on destination
node starting from the offset equal to the offset of localDstBuf from the beginning of this buffer
proxy in local DestSpace.

Both remoteSrcProxyAddr and localDstBuf should be VMMC word aligned. Both
remoteSrcProxyAddr (source address of the first word) and
remoteSrcProxyAddr+4*nwords-1 (source address of the last word) should belong to the same
imported receive buffer.

vmmc_GetData() can be used from within notification handler.

Note: Page faults are possible if remoteSrcProxyAddr or localDstBuf do not correspond to
valid addresses.

Returns:

• vmmc_Success

• negative error code on failure

36

vmmc_GetDataAsync()

Asynchronously gets data from a remote buffer.

Synopsis:

(vmmc_result_t) res = vmmc_GetData (int32 *localDstBuf,
int32 *remoteSrcProxyAddr,
uint32 nwords,
vmmc_async_handle_t *handle)

Parameters:

IN int32 *localDstBuf: address of user buffer to place fetched data,
buffer memory must be allocated

IN int32 *remoteSrcProxyAddr: address in local DestSpace corresponding to an imported
remote receive buffer

IN int nwords: size of the message in words

OUT vmmc_async_handle_t *handle: handle to the outstanding asynchronous request

Description:

vmmc_GetDataAsync() initiates an asynchronous request to retrieve nwords from address
remoteSrcProxyAddr and copies them to the local buffer specified by localDstBuf.
vmmc_GetData() returns as soon as the request is initiated.

remoteSrcProxyAddr determines the source of the data. This is the receive buffer which proxy in
local DestSpace contains localDstBuf address. Since each DestSpace address belongs to no more
than one proxy, this identification is unique. The data will be put in the receive buffer on destination
node starting from the offset equal to the offset of localDstBuf from the beginning of this buffer
proxy in local DestSpace.

Both remoteSrcProxyAddr and localDstBuf should be VMMC word aligned. Both
remoteSrcProxyAddr (source address of the first word) and
remoteSrcProxyAddr+4*nwords-1 (source address of the last word) should belong to the same
imported receive buffer.

vmmc_GetDataAsync() can be used from within notification handler.

Note: Page faults are possible if remoteSrcProxyAddr or localDstBuf do not correspond to
valid addresses.

Returns:

• vmmc_Success

• negative error code on failure.

37

vmmc_ImportRecvBuf()

Imports a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_ImportRecvBuf (vmmc_node_t node,
vmmc_pid_t pid,
uint32 rbufid,

 vmmc_imphandle_t *handle,
int32 **proxyBuf,
uint32 *nwords)

Parameters:

IN vmmc_node_t node: address of a node on which exported the receive buffer

IN vmmc_pid_t pid: process id that exported the receive buffer

IN uint32 rbufid: receive buffer id

OUT vmmc_imphandle_t *handle: handle to the imported buffer

OUT int32 **proxyBuf: local address in DestSpace which corresponds to the imported
 receive buffer

OUT uint32 *nwords: size of the imported buffer in VMMC words.

Description:

Imports a receive buffer named rbufid which has been exported by process pid running on node.

The imported receive buffer is allocated in a region of destination address space between proxyBuf
and proxyBuf + vmmc_WordSize()*nwords -1.

Returns:

• vmmc_Success

• negative error code on failure

38

vmmc_ImportRecvBufAsync()

Issues an asynchronous request to import a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_ImportRecvBufAsync (vmmc_node_t node,
vmmc_pid_t pid,
uint32 rbufid,

 vmmc_imphandle_t *handle)

Parameters:

IN vmmc_node_t node: address of a node on which exported the receive buffer

IN vmmc_pid_t pid: process id that exported the receive buffer

IN uint32 rbufid: receive buffer id

OUT vmmc_imphandle_t *handle: handle to the import buffer request

Description:

Issues an asynchronous request to import a receive buffer named rbufid which has been exported by
process pid running on node. The status (and completion) of the request is verified using the
returned handle and the call vmmc_ImportRecvBufStatus().

The imported receive buffer is allocated in a region of destination address space between proxyBuf
and proxyBuf + vmmc_WordSize()*nwords -1.

Returns:

• vmmc_Success

• negative error code on failure.

39

vmmc_ImportRecvBufStatus()

Checks the status of an outstanding asynchronous request to import a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_ImportRecvBufStatus (vmmc_imphandle_t *handle,
int32 **proxyBuf,
uint32 *nwords)

Parameters:

IN/OUT vmmc_imphandle_t *handle: handle to the import-buffer request

OUT int32 **proxyBuf: local address in DestSpace which corresponds to the imported
 receive buffer

OUT uint32 *nwords: size of the imported buffer in VMMC words.

Description:

Checks the status of an outstanding asynchronous request to import a receive buffer. handle
identifies the outstanding request. The return result is vmmc_Success if the request completes
successfully. In this case, *proxyBuf and *nwords represent the appropriate values for a buffer
import.

If the asynchronous is not yet complete, the return value is vmmcErr_InProgress.
vmmcErr_BadAsyncHandle is returned for invalid handles. While vmmcErr_StateHandle
indicates that the application has already verified the success of this particular request.

The imported receive buffer is allocated in a region of destination address space between proxyBuf
and proxyBuf + vmmc_WordSize()*nwords -1.

Returns:

• vmmc_Success

• vmmcErr_InProgress if the asynchronous request is not yet complete

• vmmcErr_BadAsyncHandle if the handle is not valid

• vmmcErr_StaleHandle if the handle has already been checked after completion

• negative error code on failure

40

vmmc_MyHostName()

Return the hostname of the machine.

Synopsis:

(char*) res = vmmc_MyHostName()

Parameters:

none

Description:

Returns the hostname of the machine.

Returns:

(char*) hostname string

41

vmmc_MyNode()

Returns the node id of the machine.

Synopsis:

(vmmc_node_t) res = vmmc_MyNode()

Parameters:

none

Description:

Returns the node id of the machine.

Returns:

(vmmc_node_t) a node Id

42

vmmc_MyPid()

Returns the pid of the calling process.

Synopsis:

(vmmc_pid_t) res = vmmc_MyPid()

Parameters:

none

Description:

Returns the pid of the calling process.

Returns:

(vmmc_pid_t) the pid of the calling process

43

vmmc_NameToNode()

Returns the node Id of a given hostname.

Synopsis:

(vmmc_node_t) res = vmmc_NameToNode(char *hostname)

Parameters:

IN char *hostname: name of host to convert

Description:

Returns the node Id of a given hostname.

Returns:

(vmmc_node_t) a node Id

44

vmmc_NodeToName()

Returns the name of a given node.

Synopsis:

(char *) res = vmmc_NodeToName (vmmc_node_t node)

Parameters:

IN vmmc_node_t node: the node Id to convert

Description:

Returns the name of a given node.

Returns:

(char *) a hostname

45

vmmc_PageSize()

Returns the size of a VMMC page in bytes.

Synopsis:

(int) res = vmmc_PageSize()

Parameters:

none

Description:

Returns the size of a VMMC page in bytes.

Returns:

(int) the size of a VMMC page in bytes

46

vmmc_Parent()

Returns the pid and node id of the parent process.

Synopsis:

(vmmc_result_t) res = vmmc_Parent (vmmc_node_t *parentNode, vmmc_pid_t *parentPid)

Parameters:

OUT vmmc_node_t *parentNode: returns node of parent process

OUT vmmc_pid_t *parentPid: returns the pid of a parent process

Description:

vmmc_Parent() returns node and process id of the parent process. This call is guaranteed to work only
if the caller process has been started with vmmc_Spawn(). In this case, the parent is the process
which executed vmmc_Spawn().

Returns:

• vmmc_Success

• vmmcErr_NoParent

47

vmmc_PostRedir()

Activates transfer redirection for an exported buffer.

Synopsis:

(vmmc_result_t) res = vmmc_PostRedir(vmmc_exphandle_t bufHandle,
 uint32 redirOffset,
 uint32 numWords,
 int32 *userBuf)

Parameters:

IN vmmc_exphandle_t bufHandle: handle to exported buffer

IN uint32 redirOffset: buffer’s word offset to initiate redirection

IN uint32 numWords: number of words to redirect

IN int32 *userBuf: destination for the redirected data

Description:

Activates transfer redirection for an exported buffer at the specified redirOffset for numWords.
There is no guarantee that redirection will take place. VMMC will try to redirect as much of the data as
possible, but how much was actually redirected is reported by the call to vmmc_EndRedir().

There can be only one outstanding redirection request per buffer.

Returns:

• vmmc_Success

• negative error code on failure.

48

vmmc_SendData()

Sends a message.

Synopsis:

(vmmc_result_t) res = vmmc_SendData (int32 *localSrcAddr,
 int32 *remoteDestProxyAddr,
 uint32 nwords)

Parameters:

IN int32 *localSrcAddr: address of data to send. It can be any address corresponding to
 allocated data.

IN int32 *remoteDestProxyAddr: address in local DestSpace corresponding to an imported
 receive buffer.

IN int nwords: size of the message in VMMC words

Description:

Sends a message of nwords taken from address localSrcAddr to remote memory specified by
remoteDestProxyAddr (obtained by importing a buffer). vmmc_SendData() returns after the
message has been transferred to the network.

Both localSrcAddr and remoteDestProxyAddr must be VMMC word aligned.
Both remoteDestProxyAddr (first word of destination address)
and remoteDestProxyAddr+4*nwords-1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendData() can be used from within notification handler.

Note: Page faults are possible if localSrcAddr or remoteDestProxyAddr do not correspond
to valid addresses.

Returns:

• vmmc_Success

• negative error code on failure

49

vmmc_SendDataAsync()

Asynchronously sends a message.

Synopsis:

(vmmc_result_t) res = vmmc_SendDataAsync (int32 *localSrcAddr,
 int32 *remoteDestProxyAddr,
 uint32 nwords,
 vmmc_async_handle_t *handle)

Parameters:

IN int32 *localSrcAddr: address of data to send. It can be any address corresponding to
 allocated data.

IN int32 *remoteDestProxyAddr: address in local DestSpace corresponding to an imported
 receive buffer.

IN int nwords: size of the message in VMMC words

OUT vmmc_async_handle_t handle: handle to keep track of the asynchronous send request

Description:

Sends a message of nwords taken from address localSrcAddr to remote memory specified by
remoteDestProxyAddr (obtained by importing a buffer). vmmc_SendDataAsync() returns
immediately upon issuing the data transfer request without waiting for transmission to the network..
vmmc_AsyncStatus() is used to verify the progress of the data transfer request.

 Both localSrcAddr and remoteDestProxyAddr must be VMMC word aligned.
Both remoteDestProxyAddr (first word of destination address)
and remoteDestProxyAddr+4*nwords-1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataAsync() can be used from within notification handler.

Note: Page faults are possible if localSrcAddr or remoteDestProxyAddr do not correspond
to valid addresses.

Returns:

• vmmc_Success

• negative error code on failure

50

vmmc_SendDataAsyncNotify()

Asynchronously sends a message with a notification.

Synopsis:

(vmmc_result_t) res = vmmc_SendDataAsyncNotify(int32 *localSrcAddr,
 int32 *remoteDestProxyAddr,
 uint32 nwords,
 vmmc_async_handle_t *handle)

Parameters:

IN int32 *localSrcAddr: address of data to send. It can be any address corresponding to
 allocated data.

IN int32 *remoteDestProxyAddr: address in local DestSpace corresponding to an imported
 receive buffer.

IN int nwords: size of the message in VMMC words

OUT vmmc_async_handle_t handle: handle to keep track of the asynchronous send request

Description:

Sends a message of nwords taken from address localSrcAddr to remote memory specified by
remoteDestProxyAddr (obtained by importing a buffer). A notification is invoked when the data
is received. vmmc_SendDataAsyncNotify() returns immediately upon issuing the data transfer
request without waiting for transmission to the network.. vmmc_AsyncStatus() is used to verify
the progress of the data transfer request.

Both localSrcAddr and remoteDestProxyAddr must be VMMC word aligned.
Both remoteDestProxyAddr (first word of destination address)
and remoteDestProxyAddr+4*nwords-1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataAsyncNotify() can be used from within notification handler.

Note: Page faults are possible if localSrcAddr or remoteDestProxyAddr do not correspond
to valid addresses.

Returns:

• vmmc_Success

• negative error code on failure

51

vmmc_SendDataNotify()

Sends a message with a notification.

Synopsis:

(vmmc_result_t) res = vmmc_SendData (int32 *localSrcAddr,
 int32 *remoteDestProxyAddr,
 uint32 nwords)

Parameters:

IN int32 *localSrcAddr: address of data to send. It can be any address corresponding to
 allocated data.

IN int32 *remoteDestProxyAddr: address in local DestSpace corresponding to an imported
 receive buffer.

IN int nwords: size of the message in VMMC words

Description:

Sends a message of nwords taken from address localSrcAddr to remote memory specified by
remoteDestProxyAddr (obtained by importing a buffer). A notification is invoked when the data
is received. vmmc_SendData() returns after the message has been transferred to the network.

Both localSrcAddr and remoteDestProxyAddr must be VMMC word aligned.
Both remoteDestProxyAddr (first word of destination address)
and remoteDestProxyAddr+4*nwords-1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataNotify() can be used from within notification handler.

Note: Page faults are possible if localSrcAddr or remoteDestProxyAddr do not correspond
to valid addresses.

Returns:

• vmmc_Success

• negative error code on failure

52

vmmc_SessionHosts()

Returns the names of the hosts that are part of the current user’s session.

Synopsis:

(vmmc_result_t) res = vmmc_SessionHosts (uint32 *nhosts, vmmc_node_t **hostIds)

Parameters:

OUT uint32 *nhosts: returns the number of hosts

OUT vmmc_node_t **hostIds: returns nhosts host ids

Description:

vmmc_SessionHosts() returns only the nodes that are part of the current user’s session. Once a
user program is started, nodes should not be added or deleted. The hostIds array should not be freed or
written by user program.

Returns:

• vmmc_Success (the constant 0)

• negative error code on failure

53

vmmc_SetDebugLevel()

Sets the amount of debug information that VMMC outputs.

Synopsis:

(void) vmmc_SetDebugLevel (int level)

Parameters:

IN int level: the debugging level

Description:

Sets the amount of debug information that VMMC outputs. Zero (default) turns off all information
while a positive integer produces lots of fun VMMC debug messages.

Returns:

(void) nothing

54

vmmc_Spawn()

Spawns a process.

Synopsis:

(vmmc_result_t) res = vmmc_Spawn (char *execfile,
 char **argv,
 vmmc_node_t node,
 vmmc_pid_t *pid)

Parameters:

IN char *execfile: new process will execute the filename. If full path is not given, the
 path will be relative to the current working directory of the calling
 process.

IN char **argv: list of arguments for new process, starting from argv[1]. Last element of
 this list must be NULL.

IN vmmc_node_t node: identifies remote machine on which to start new process

OUT vmmc_pid_t *pid: returns the pid of the new process.

Description:

vmmc_Spawn() starts a new process.

Returns:

• vmmc_Success

• negative error code on failure

55

vmmc_UnblockNotifications()

Conditionally unblocks delivery of notifications.

Synopsis:

(int) res = vmmc_UnblockNotifications()

Parameters:

none

Description:

vmmc_UnblockNotifications() conditionally unblocks delivery of notifications to all receive
buffers of a calling process. VMMC maintains internal counter which counts blocking level of
notifications. This counter is incremented each time vmmc_BlockNotifications() is called.
When vmmc_UnblockNotifications() is called, and this counter is positive, it is decremented.
When this counter is zero, a call to vmmc_UnblockNotifications() has no effect.
Notifications are unblocked only if this counter reaches zero.

Notifications are automatically blocked when notification handler is called.
vmmc_UnblockNotifications() can be called from within notification handler, but it cannot
actually unblock notifications in such case. If the internal counter is one, and
vmmc_UnblockNotifications() is called from the handler, this call returns the error
vmmc_ENotInHandler and the counter remains unchanged.

Returns:

• a positive integer indicating the remaining number blocking levels. Notifications are still blocked.

• zero if notifications were successfully unblocked

• negative error code

Example:

The following loop unconditionally unblocks notifications (with error set if it is called inside handler):

int status;
while (status = vmmc_UnblockNotifications()) == 0)

;
if (status < 0)

vmmc_Error(status, "unconditional unblocking");

56

vmmc_UnexportRecvBuf()

Unexports a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_UnexportRecvBuf(vmmc_exphandle_t handle)

Parameters:

IN vmmc_exphandle_t handle: handle that corresponds to an exported receive buffer

Description:

Unexports the receive buffer specified by handle.

Returns:

• vmmc_Success

• negative error code on failure

57

vmmc_UnimportRecvBuf()

Unimports a receive buffer.

Synopsis:

(vmmc_result_t) res = vmmc_UnimportRecvBuf (vmmc_imphandle_t handle)

Parameters:

IN vmmc_imphandle_t handle: handle that corresponds to an imported receive buffer

Description:

Unimports the receive buffer specified by handle.

Returns:

• vmmc_Success

• negative error code on failure

58

vmmc_Version()

Returns the major and minor VMMC version numbers.

Synopsis:

(void) vmmc_Version (uint32 *major, uint32 *minor)

Parameters:

OUT uint32 *major: returns the VMMC version major number

OUT uint32 *minor: returns the VMMC version minor number

Description:

Returns the major and minor VMMC version numbers.

Returns:

(void) nothing

59

vmmc_WordSize()

Returns the number of bytes in a VMMC word.

Synopsis:

(int) res = vmmc_WordSize()

Parameters:

none

Description:

Returns the number of bytes in a VMMC word.

Returns:

(int) the number of bytes in a VMMC word

60

Index

A

Administrator’s Guide 7

C

CFGVMMC.EXE .. 10
Changes in Version 2.0...................................... 6
Cluster Organization.. 16
Cluster Service and Utilities 8

D

Data Transfer ... 17
Data Types... 23
Destination Proxy Space (DestSpace) 17

E

Enabling Interactive Jobs................................... 8

I

Importing Receive Buffers............................... 16
Installing the VMMC SDK................................ 9

K

Kai Li... 1

N

Notifications .. 20

O

Output Logging.. 12

P

Princeton University .. 5

R

Receive Buffers ... 16
Return Values .. 24
Running VMMC Programs.............................. 11

S

Sample VMMC Programs 13
SHRIMP Project .. 5
Starting and Stopping VMMC........................... 7
System Log Files ... 8

T

Transfer Redirection .. 17

U

User’s Guide .. 9
Using CFGVMMC.EXE...See CFGVMMC.EXE
using the CFGVMMC utilitySee Running

VMMC Programs

V

VMMC Overview.. 15
VMMC Session Creation and Deletion.............. 9
VMMC System Account and Network Share.... 7
VMMC System Root Directory 7
vmmc_AllHosts()... 26
vmmc_AsyncStatus()....................................... 27
vmmc_BlockNotifications() 28
vmmc_ClearDataEnd() 29
vmmc_DataEnd()... 30
vmmc_EndRedir() ... 31
vmmc_EqualNodes() 32
vmmc_ErrorStr().. 33
vmmc_ExportRecvBuf().................................. 34
vmmc_GetData() ... 35
vmmc_GetDataAsync() 36
vmmc_ImportRecvBuf().................................. 37
vmmc_ImportRecvBufAsync()........................ 38
vmmc_ImportRecvBufStatus() 39
vmmc_MyHostName() 40
vmmc_MyNode()... 41
vmmc_MyPid().. 42
vmmc_NameToNode() 43
vmmc_NodeToName() 44
vmmc_PageSize() .. 45
vmmc_Parent()... 46
vmmc_PostRedir() ... 47
vmmc_SendData() ... 48
vmmc_SendDataAsync() 49
vmmc_SendDataAsyncNotify()....................... 50
vmmc_SendDataNotify() 51
vmmc_SessionHosts() 52
vmmc_SetDebugLevel() 53
vmmc_Spawn().. 54
vmmc_UnblockNotifications() 55
vmmc_UnexportRecvBuf().............................. 56
vmmc_UnimportRecvBuf() 57
vmmc_Version() .. 58
vmmc_WordSize()... 59

