VMMC Communication Model

Windows NT User’'s Guide
and
APl Reference

Version 2.0

The Shrimp Project

Department of Computer Science
Princeton University

February 1999

About this Document

Welcometo VMMCI! The goals of this document are threefold:
1. Anintroduction to the VMMC model.
2. How to use and manage VMMC on aWindows NT cluster.

3. A description of the VMM C programming model as well as a programmer’ s reference for
the VMMC API.

Users of VMM C are encouraged to join the email list used for VMM C announcements. Join the list to keep
up with the latest VMM C developments. To join the email list, send a message to

maj ordomo@cs.princeton.edu with “subscribe vmmc-announce youremail @yourcompany.com” in the
body of the message. Email traffic is minimal.

We welcome input about functionality, bugs, and possible extensionsto the API. Please send your
comments or questions to vmmc-help@cs.princeton.edu. For more information on The SHRIMP Project
(including technical papers) please visit our web site at http://www.cs.princeton.edu/shrimp.

Contents

VMMC COMMUNICATION MODELocotiiitiiieiesiesiese et ee e see st sseeseeseessesaessessesseeseeseensessesenns 1
ABOUT THISDOCUMENT ...ttt ettt sttt e e e se e besaeebesseeseesenseseeseessesneeneeneensensesenns 2
(010 A I I A S 3
INTRODUGCTION .ottt sttt e et b e ae bt et e e e eese e eb e s bt eh e eae e s e e e seeebesaeebesaeenseeeseennas 5
ChangeSiN VEIrSION 2.0......ciiee ettt e e e s e sae e sae e aeeateeaseesaeeseeste e seenseeseesneesreesneenseenseenes 6
ADMINISTRATOR S GUIDE ..ottt s b et ie e ss et et ebesaeene e e e nnenbesee s 7
1. VMMC System ROOL DIFECIOMY ...oeiueiiee et cte ettt sttt sna et e te e te e e snnesnnas 7

2. VMMC System Account and NEtWOrK Share.........cceceieeeieeiieni e e seesee s e e as e e sne e s 7

3. Starting and SIOPPING VIMMC ...ttt et e st e e aesnae e e sneesneenneenes 7

4. VMMC Cluster Service and ULHTIES........coeeeeeeie et 8
5. ENabling INTEraCliVe JODS.........coiiiiiiiiree ettt 8

6. SYSIEM LOG FIIES ...ttt bbb et b et b e et b et e 8
USER S GUIDE ..ottt sttt sttt s et e e eesa e s besaeeb e e st ene e e e seenbeseesbesneeneeneensenteseenses 9
1 InStalling the VIMIMC SDK ..ottt bbb bt 9
2. VMMC Session Creation and DEELIONccooiiiiiiiiieeeee e see 9
USING CEGVIMMUC.EXE ..ottt sttt ea st e e se bbbttt b e bbbt b e e e e e e e nn e b e 10

3. RUNNING VIMIMC PrOQIaIMS.c.eiiiieieesieesieesiesitesesseesaeesseenseessesssesseessesssesssesssssssssssesssessessessssssenssenns 11
Running programs 0N @ VMMOEC NOGE.ocuiiieiieie e eeestee e e ee e e e e sreesaeeaeenaesneesneenseens 11
Running programs USINg CFGVMMCooui et e st ae e s saeesseenaeenaesnaesneanreens 11

2B © 11| 8o o 1o TSR 12

5. SAMPIE VIMMC PrOQIaIMS.....cuiueeiiiuiieuertiteieritsseiesies et sse st e s b et sbe e st st ese st e e s sbe e esesbe e 13
275 TS oL R 13
SIMPIE EXAIMPIES. ...ttt ettt ettt b e et b e e et eb e s et eb e s e et ebesbe e ebese e e ebesneneas 13
Two Node Bandwidth CUrve EXAMPIES..........ccuciiiieiriieirereeeri et 13
MUItI-NOTE EXAMPIES.......ceeecte et ettt ettt b e et b et b e et 14
PROGRAMMING MODEL ..ottt e e see st ene e e e neeseeseees 15
Lo VIMIMC OVEIVIBW ...ttt etttk b et e e e e ke eh e eb e e st e he e s e s et e se e eb e s bt ebeene e e e nennenas 15

A O VTS (= g @ o = a2 (o) o [S PRSUPR 16

3. RECEIVE BUFFEIS. ..ot bttt et e bttt et bbbt bt et e e e e e et e 16
4. IMPOrting RECEIVE BUFFEIS.......ccuiieiee ettt st et sna et et e e e e e eneesnnas 16
5. Destination ProxXy SPace (DESESPECE)........cceeueiiuriieeieestierteeteeeesteeseesteestesaeseesseesseessessesssessesssenns 17
B. DAATIANSIEN ...ttt et b et e e ettt h e e bt e e ee b et eb et ne e e ne e 17

A I 1= 11 = L= [T o o o S 17

S I L) 1T o] RS 20

9. Removal of IMPOIt-EXPOIT LiNKcccciiiieiriiieiiiieesesie e bbb 21
VMM C APl REFERENCE.........o ottt sttt ettt st et eteseesbesaeebeeneeneeneensesees 22
A Y LY LG BT = R 1Y o USSR 23
VIMMC REIUIN VBIUES. ...ttt ettt sttt et e e e s ee et e ae st eneeneeneeseenbesaeeresneenseneensensesnens 24
VITIMC_AITHOSIS() +euveenieeieiie ettt ettt sae e sae e teenteeae e eneeesae st e enteenteensesneesanesneenneeneeenes 26
VITIMC_ASYNCSLAIUS) ..t evveeeeieeeieeeste et eteeseeseesteesteeteesteestesseesseesseesseanseanseaseeasansseesseessesnsessssssnesseessnensennes 27
V200100 (ol =1 oot AN Lok o= (0] 1= S 28
(V00 04T O == T = = = o [S 29
(VA0 04 ToR B = == o [S 30
VIMMC_ENAREAIT() vttt b e et b e et eb e et b e se e e eb e e e ebenee e 31

VMMC_EQUBINOOES() ... vttt b e et b e ettt s a et b e et eb e b e b e e 32

VIMMC_ETTOISII() ettt b e et b et b e s bbb etk s e e e ke e et ebese e e ebeneeneas 33
VMMC_EXPOITRECVBUF() ...ttt st eb e st b e e e b e ebenne e 34
VIMMC_GEIDBEA) .- veveneeterteeet ettt ettt b et b e et b e e e e bt sb et eb e s e e e eb e sa e e ebesee e ebese e e ebeneeneas 35
VMMC_GEIDBAASYINC() - -veveueetereeneetesiee ettt ettt ettt bt b et eb e s e e eb e se et b e se e e eb e see e ebese e e ebeseeneebeneeneas 36
VMMC_TMPOITRECVBUT() ...e.ve ettt st te et et e s e s ra et e e te e teentesneesnnesneesnneneeenes 37
VMMC_IMPOMRECVBUFASYINC()...veeveeeeerieeieiestiesteesteeiestesaesaeesteesseeteeseeesaessaesseeteenseensessessseesseesseenseenes 38
VMMC_IMPOMRECVBUFSEAIUS()eeveeveeiieiietiesieese et e ste et ste ettt ssa et et ete e teentesneesneesneesneenneenes 39
VIMMC_MYHOSINGIME()veieeiee et e sttt te e s st e ste et e et e esaeesa et e este e teensesneesnnesneenneenseenes 40
A2 00100 TOR 1Y Y7o = S 41
A2 00O 1Y Y7 o [42
VMMC_NBMETONOUE() ...t veneetereeeetestee ettt sttt sttt st eb e bbb e e eb e s e e e ek e se e e ebesee e ebeneeneas 43
VMMC_NOUETONGITIE() ...ttt ettt ettt sttt st eb e et b e e et eb e se et b e s e e e eb e sae e ebesee e ebesae e ebenneneas 44
VIMMC_PAJESIZE() ...t eeneete ittt ettt b et b bt b e et b e e e e b e sh et e bt s e et eb e sa e e ek e se e e et e sae e ebeneeneas 45
VIMIMC_PAIENT() ©.veeeeteieeiet ettt sttt b e bt b e s e et b e se et eb e s e et eb e s e et ebeseeneebesee e ebeneeneas 46
VIMMC_POSIREAIT() -ttt ettt b e et b e bt eb e e e b e e e eb e e e e b e nee e 47
VIMMC_SENODEEA() -.veveueetereeieetereeeete sttt sttt sttt et b e e et b s e et ebese e e eb e sb et eb e se e e eb e see e ebeseeneebesae e ebenneneas 48
VIMMC_SENOD@LAASYIIC() -vvuvveveeiueesieeiteeteeteeeesteesteesteetessesseesseesseesseeseasseasseaseessenssensessessssssesseesseenseenes 49
vMMC_SeNdDataA SYNCNOLTY()....civeerieieeieeeesies e se et et e s e e e teetesseesaeesneesneeneenes 50
VMMC_SENADAANOLITY() ..e.vveeeeieeieesie ettt sae e ae et et e esaesra e te e e e teensesneesneesreesneenneenes 51
VIMIMC_SESSIONHOSES() «vevveueeiieeieesieesteeiteee et e st e te e e e testesaesaeesaeesseenteenseesaeasaasseenseenseensesneesanesneessnenseenes 52
VIMMC_SEDEDUGLEVEI() ...eeeeieee ettt sttt e et et e e e e entesneesaeesneenneenneenes 53
VIMIMC_SPAWN() ¢ttt sttt ettt se ekttt ekt et bt se et eb e s s et ebese e st eb e se e s e eb e se et ebeseeneeb e s e et ebeseeneebeseeneebeneeneas 54
VMMC_UNDIOCKNOLITICAITONS() +..vvveveeeneetereeiete ettt ettt eb e eb e s b e e b e e ebe e 55
VMMC_UNEXPOIRECYBUF() ...cveeieeeteieeeet sttt b e eb e st b e e b e eb e e 56
VMMC_UNIMPOITRECVBUF ()veveeeteieeeet sttt eb e st s b e e ebenne e 57
VIMIMC_VEISION() +ntetetenieterteeete sttt ettt et eb e se etk s b et eb e s e e st eb e s e e e eb e se et eb e se e s e eb e seene et e see e ebesaeneebeneeneas 58
VIMMC _WOPTASIZE() ..tttk b et b e et b e et b e s b et bt s e et eb e sae e ebese e e ebesee e ebenneneas 59
INDEX ..ottt b b b0 Rt s R e R AR R AR R R R R R Rt R Rt R Rt ner e 60

I ntroduction

The SHRIMP Project at Princeton University studies ways to integrate commaodity desktop computers, such
as PCs and workstations, into inexpensive, high-performance multicomputers. The goa isto build an
inexpensive system from off-the-shelf components with minimal custom-designed hardware. Ideally, such
a system would offer a performance competitive with, or better than, the performance of specially designed
multicomputers for both message passing and shared-memory programming models.

During the course of our research we found that the network interfaces (NI) of existing multi-computers
and workstation networks introduce large software overheads for communication. The main reason for this
overhead is that these network interfaces require a significant number of instructions at the operating
system and user levels to provide protection and buffer management. Motivated by this fact, we designed
and built two custom network interfaces (SHRIMP™I and SHRIMP-I1) for low-latency, high-bandwidth
user-to-user communication. These network interfaces implement our model of user-level communication
caled VMMC (virtual memory-mapped communication) which provides direct data transfer between the
sender’s and receiver’s virtual address spaces. Additionally, this model eliminates operating system
involvement in communication, provides full protection, supports user-level buffer management, zero-copy
protocols, and minimizes software communication overhead.

We also wanted VMMC to enable the creation of libraries implementing a variety of new and old APIsfor
parallel and distributed programming. Examples of such libraries include message-passing APIs like PVM,
NX/2, distributed shared-memory, and client-server APIslike RPC and stream sockets.

The introduction of commodity programmable network interfaces enabled us to transfer most of the
functionality of our custom network interface to off-the-shelf NI hardware. We achieved this by
implementing support for our user-level communication model in the NI firmware. The firmware together
with a device driver and a user-level library implement the VMM C communication model.

A pplications / Com munication Libraries

VMMC G
User-Level Librar
Host Y Device Driver
N etw ork .
Interface VM MC Firmw are

Figure 1. The componentsof VMMC

1 SHRIMP is an acronym for Scalable High-performance Really | nexpensive M ulti-Processor

5

Changes in Version 2.0

Version 2.0 of VMMC includes many improvements to the original VMMC release. Briefly, the
improvements are:

The API functions are renamed to begin with “vimt_

The VMMC data types were changed and renamed for consistency.

A transfer redirection mechanism was added to enable true zero-copy protocols.

The APl now supports remote data fetch.

The network interface firmware was extended to support reliable data transfer using link-level
retransmission.

Administrator’ s Guide

This section describes the VMM C system file layout on each cluster node, VMMC cluster services, and
how to start and stop VMMZC. To run the commands described in this section the administrator must log in
as VMMC. Note that the VMM C account has administrative privileges.

1. VMMC System Root Directory

The VMMC system installation sets up aVMMC system root directory on each cluster node. The VMMC
root is%By st emRoot % vt by default. On most Windows NT, the %8y st emRoot %is C: \ W nNT.

The VMMC system root directory contains all necessary files for running VMMC services. The directory

structure is as follows:

¥Syst emRoot % vime:

driver\ containsvnmecdr v. sys (VMMC device driver)
server\ containsvnmetsvr . exe (VMMC Cluster Server)
bin\ contains utilities and the firmware loader

M oad. exe, MCPSt art . bat , MCPSt op. bat
mcp\ contains Myrinet firmware code: mcp4.dat
logs\ system log files: server.log and driver.log

vmmc-hosts.txt atext filethat listsal VMMC nodesin the cluster

During the VMM C system software installation the VMMC root directory is exported as a network share
with a share name VMVC. Thisis done to simplify the remote administration of the VMMC cluster. On a
Windows PC, the administrator can update the VMMC system files or check the VMMC logs by simply
accessing a node's exported VMMC folder. For example,

NET use \\nodel\vnmt vmmt /user:vmmt # login as vimt
TYPE \\ nodel\ vmmt\ | ogs\ server. | og # view server log file

2. VMMC System Account and Network Share

During VMM C system installation, alocal account vimt is created on each cluster node. We have chosen
vmmc as the password for this account. An administrator can modify the password using Windows NT’s
User Manager. However, the administrator must make sure that the VMMCSVR service can till run under
the local vmmc account. The Service Control Manager (invoked from the Control Panel) can be used for
this purpose.

The home directory for the vmmc account is %8y st enRoot % vime. If UWIN isinstalled on the cluster
node, the .rhosts file must be located in this directory in order for the rsh service to work properly.

3. Starting and Stopping VMMC

The low-level components of VMM C include the device driver VMMCDRYV and the Myrinet firmware
mcp4.dat. To enable VMMC, the administrator must perform the following two tasks in order: (1) start the
VMMC device driver and, (2) load the Myrinet firmware.

To start the VMMC device driver, the administrator can invoke the NET command from a command shell
(DOS shell) asfollows:

NET start VMMCDRV

After the driver is successfully started, the administrator can load the VMM C firmware into the Myrinet
network interface, using the MPCSTART script. The MCPSTART script islocated in the bin/ folder under
VMMC system directory. In the same folder, there exists an MCPSTOP script that the administrator can
use to disable the Myrinet network interface.

C\> CD %gyst enRoot % VIWMC
C:\ W NNT\ VMMC> CD bin
C: \ W NNT\ VMMC\ bi n> MCPSt art . BAT

4. VMMC Cluster Service and Utilities

Once the VMMC system is successfully started on each cluster node, the user can run VMMC programs
using Myrinet. An integral part of VMMC isits API for remote process creation. This APl includes
vimt_Spawn(), vhmc_Par ent (), and others. The remote process creation is implemented by the
VMMC Cluster Service, VMMCSVR. The VMMCSVR aso provides basic support for process management
and output logging. An instance of VMMCSVR runs as a Windows NT service on each VMM C Cluster
node. It isautomatically started during the system boot time.

5. Enabling Interactive Jobs

The user must log on to each VMMC cluster node using the vt account, before he or she can run any
interactive jobs. Otherwise, processes created by VMMCSVR will not be visible on the NT desktop. Thereis
away to enable automatic logging into alocal account on a Windows NT workstation. The administrator
should consult Microsoft Developer’s Network documentation for this feature.

6. System Log Files

On each VMMC cluster node, the VMMC system produces two log files, server.log and driver.log. Both
residein ¥%8yst emRoot % vimt\ | ogs directory. The server.log file contains information and error logs
from VMM CSVR, mostly regarding session and process management. The driver.log file contains logs for
the VMMCDRYV device driver and the Myrinet network interface.

User’'s Guide

In this section we give an overview of the components involved in the Windows NT implementation of
VMMC. We also describe how to run VMM C applications.

1. Installing the VMMC SDK

The VMMC SDK isdistributed in zip fileanamed vime_sdk_2_0. zi p. The zip contains the following
directory structure:

e include: header files needed to compile VMMC programs

« exanpl e: sample vmmc test programs

« exanpl e\ bi n: pre-compiled test programs

e lib: user-level library vimre. | i b and the debug versionvmmed. | i b
e utils: various utilities including CFGVMMC. exe

2. VMMC Session Creation and Deletion

Prior to running VMMC programs, the user must create an active session on al VMMC cluster nodes. A
VMMC session consists of a session name, a user hame, a user password, alocal drive, a network share,
and an output logging directory (see Figure 2). The user must specify a non-empty string for the session
name. The string can be of any characters. The session name is unique on any VMMC cluster node.

Each session requires afile system drive on which the VMMCSVR sets a new process’ current working
directory®. The current working directory isafull path relative to the drive, without the drive letter
attached. The drive can be either alocal disk drive (e.g., C:) on the node, or represent a mounted network
share. In the latter case, the user must specify a network share using Uniform Naming Convention (e.g.,
\\ Fi | eSer ver\ vimt) during session creation. However, the user need not specify a drive letter for
mounting a network share. VMMCSVR can select an available drive letter to use. Furthermore, the drive
letter for a given session need not be the same on all nodes. VMMCSVR keeps track of the drive letter for
each session and sets a process’ working directory accordingly when creating processes.

When a user deletes a session, all processes created within the session are killed automatically by
VMMCSVR. The network share is also dismounted during session destruction.

2 Mounting the network share on the local drive is necessary because the NT operating system cannot use a
UNC (Uniform Naming Convention) path as a process’ working directory.

9

VmmcSvr

session-1
Session: session-2
. drive: Z:
selen] remote: \FS\VMMC
T logdir: \vmmclogs
session-N

> N
\WFS\WVMMC on Z:

Figure 2. An example VMM C session

Using CFGVMMC.EXE

The VMMC SDK distribution supplies a utility program, CFGVIMMC. EXE (inthesdk\ ut i | s directory),
for creating and deleting sessions. CFGVMMC runs on any Windows NT workstation, including non-VMMC
cluster nodes. It communicates with VMM CSVR services using Windows NT RPC mechanism.

Syntax:

CFGVMMC host nane add session user password drive netShare outDir
CFGYMMC host nane del session

Where:
sessi on
user
passwor d

drive

net Shar e

outhDir

Examples:

anon-empty string of characters

astring, it can be empty, e.g., vhmt or

astring, and could be empty, e.g., vimrcr ul z or

atwo-letter drive name (e.g., Z:) or the character ‘-’ in which case VMMCSVR
allocates the drive

aUNC path for anetwork share, e.g.,\\ f s\ t est or anull string

a string representing the absolute path for the Output logging directory, e.g.,
\ vimrcout . It cannot be an null string.

CFGVMMC nodel add Test Sessi on guest passwd K. \\FS\ Guest \tnp
mounts\ \ FS\ Guest onK: using passwd for account guest

10

CFGVMMC nodel add Test Session guest passwd - \\FS\Guest \tnp
VMMCSVR selects adrive to mount \ \ FS\ Guest

CFGVMMC nodel add TestSession “” “” F. “” \tnp
F: iseither alocal disk drive or an already-mounted drive

CFGYMVC nodel del Test Sessi on

3. Running VMMC Programs

Once an active VMMC session is established, the user can run VMMC programs either directly on the
VMMC nodes or create them remotely from a non-VMMC PC using the CFGVMMC utility program. But
the first thing the user needsto do is set two environment variables: VMMCSESSION and VMMCHOSTS.
This can be done with the SET command in a Windows command shell:

Z:\> Set VMMCHOSTS=nodel node2 node 3 node4
Z:\> Set VMMCSESSI ON=Test Sessi on

VMMCSESSION informs the VMMC program of the session it belongsto. VMMCHOST Stellsthe
VMMC program how many nodes are available. Thelist of available nodes can be retrieved by acall to
vmt_Sessi onHost s() .

Running programs on a VMMC Node

On aVMMC node, the user can then run VMM C programs directly from the command shell. The user
should have already created an active session on al the nodes where the user intends to create VMMC
processes. Assuming the user uses drive X as the session drive, the following steps are required to run a
VMMC program:

C\>X
X:\>Set VMMCHOSTS= u2 | edzep sade
X:\ >SET VMMCSESS| ON=BLAH

X:\>CD nytestdir
X\ nytestdir>testvimt. exe

Running programs using CFGVMMC

The user can also create VMM C processes remotely from a non-VMMC PC, using the CFGVMMC utility.
This program can be found in the sdk/utils directory of the VMMC-SDK distribution. CFGVMMC uses RPC
to communicate with the VMMCSVR service running on each VMM C node for process creation and
destruction.

Syntax:
CFGYWMC host nane run session worki ngDir progranPath [args]
CFGYMMC host nane kill session [pid]

Where:
sessi on the name of an active session
wor ki ngDi r the absolute path name of the working directory,e.g.,\ myt est\ bi n

11

pr ogr anPat h the path name for the executable program, it can be either relative to the
working directory, e.g., t est . exe, or absolute, e.qg.,
\ myt est\ bi n\t est. exe. Thesuffix, . exe or . bat , cannot be omitted.

Examples:

Suppose under the network share\ \ Fi | eSer ver \ vimrtt est , there are two directories:
e bi n\ which contains executables
e tnp\ foroutput logging

Under bi n, thereisa VMMC program, TEST. EXE with syntax:
TEST. EXE argl arg2

CFGVYMVC nodel run TestSession \ \bin\test.exe argl arg2
runt est . exe with\ astheworking directory

CFGYMVC nodel run Test Session \bin test.exe argl arg2
runt est . exe with\ bi n asthe working directory

CFGYMVC nodel kill Test Session
kill all programs created in Test Sessi on

CFGVYMMC nodel kill Test Session 123
kill process with Pid=123 in Test Sessi on

4. Output Logging

The output of VMMC processes that are created by VMMCSV R can be redirected to text files. To enable
this feature, the user must specify a directory (the output logging directory) to store the redirected output
logs, when creating a session. The output of each VMMC processis recorded in afilein the logging
directory. The file name is a concatenation of the fixed string “VMMC”, the name of the node on which the
processis created, and the process' logical PID. The logical PID of aprocessis allocated by VMMCSVR.
For example, the process with alogical PID xyz on nodel will have an output logging file:
VMMC_nodel. xyz.

Processes spawned by a common parent (or grandparent) process are grouped into arun group. Therun
group ID isassigned by VMMCSVR when creating the first process (the lead) in the group. Thislead
processis the one that user starts from a command shell on aVMMC node, or the one that user creates
remotely using the CFGVMMC utility. Subsequent processes spawned by this lead process inherit the run
group ID.

The names for all output logging within arun group are recorded in an output control file. Itsfile nameisa
concatenation of the session name and the run group 1D, e.g., TestSession_11. An example of an output
control fileisasfollows:

#
VMMC CQut put Control For Session [test] Run #11 User []
#

VMVC_NODE1 11 # HOST=NCDE1 REALPI D=66 TI ME=1999/ 2/14-15:25

VMMC_NODE2 12 # HOST=NODE2 REALPI D=337 Tl ME=1999/ 2/14-13: 6

Each processin the run group is represented on a line after the comments. The syntax for each lineis:

12

VMMC_nodenarne LogicalPid # coments

In the above example, there are two processes created in this group. One on node2, with logical PID 11
and real PID 233. The output logging file for this processis VMMC _node2. 11 in the logging directory.

5. Sample VMMC Programs

This section describes the example programs that come with the VMM C release. The pre-compiled sample
programs can be found in SDK/example/bin directory.

Basics

The programs we provide al manage process creation themselves. The user only needs to run the program
onasingle VMMC node. The program will create the appropriate number of processes on remote VMMC
nodes, using vimre_Spawn() .

Most programs only spawn remote processes on nodes that are listed in the VMMCHOSTS environment
variable. The user needsto set this environment variable before running a program:
SET VMMCHOSTS = nodel node2 node3

Simple Examples

* spawn. exe [level]

This program spawnsitself on aremote node with | evel - 1. The default level is 1. The recursion
terminates when level reaches 0. The program tests the VMMC cluster server’s spawn facility.

« |atency. exe nunberof words nunberofiterations

This program measures the single-message Ping-Pong latency between two VMMC nodes.

e all?2all.exe nethod nunberof nodes nunber of words nunberofiterations
where: method = pai rwi se orrandom

This program measures the all-to-all communication bandwidth among a number of VMMC nodes. At

each iteration, every process on each node sends a number of words to the other processes in either
random or pairwise order.

Two Node Bandwidth Curve Examples

Thisfamily of programs shares the same command line syntax:

<prognane> <iterations> <start_nwords> <end_nwor ds>

These programs report the bandwidth of a particular communication pattern. The initial message sizeis
<start _nwor ds> which doubles until it reaches the final size <end_nwor ds>. Each message size test

13

isrepeated for anumber of <i t er at i ons>. For example, to test the message size sequence 1, 2, 4, ...,
1024, with 10,000 iterations at each message size, use the command: <pr ognane> 10000 1 1024

e PPBandwi dt h: average bandwidth of ping-pong communication between 2 nodes.

« OnewayBandwi dt h: average bandwidth of one node continuously pumping data to the other.

e BidirBandw dt h: average bandwidth for two nodes sending data the each other simultaneously.
* FetchBandw dt h: average bandwidth of one node fetch data from the other continuously.

Multi-node Examples

Thisfamily of examples share the same command line syntax:

<pr og_nane> <num nodes> <nwor ds> <iterations>

These programs’ communication pattern involves communication between all node involved. The program
runs on <num_nodes> contiguous nodes started from the master node, from which the command is
issued, according to the order of hostsreturned by vimrc_Sessi onHost s() . Each message involves
<nwords> words. They can be used to test the connectivity among node.

« Randonthai n: The patternisA->B, B->C, C->D, ..., X->A
al nodes are chosen and repeated randomly except that A isthe master node.

¢ RandomOne2Al | : The pattern is A->others, others->B, B->others, others->C,, others->A
all nodes are chosen and repeated randomly except that A is the master node.

* RandonAl | 2Al | : The patternis All->All, All->All, until <iterations> times

14

Programming Model

1. VMMC Overview

Virtual memory-mapped communication isamodel for protected user-level data transfer from the sender’s
virtual address space to the receiver’s virtual address space. Communication is protected because data
transfer can take place only after the receiver gives the sender permission to transfer datato a given area of
the receiver’s virtual address space. The receiving process expresses this permission by exporting areas of
its address space as receive buffers where it is willing to accept incoming data. A sending process must
import remote buffers (that are used as handles) which specify the avail able remote destinations. An
exporter can restrict which processes and hosts can importer a buffer (i.e. send it data). VMMC enforces
the restrictions when a process attempts to import a buffer (i.e., acquire a handle to the remote process's
memory). After a successful import, the sender can transfer data from its virtual memory to the imported
receive buffer. VMM C makes sure that transferred data does not overwrite addresses outside the buffer
specified by the receiver.

Receiving Process Sending Process

0x00000000 0x00000000

OXFFFFFFFF OXFFFFFFFF

virtual address physical virtual address
ace memory space

p:
- exported receive buffer III network interface

Figure 3. Virtual Memory M apped Communication

VMMC supports two data transfer modes: deliberate update and automatic update. Automatic update is
only available on SHRIMP network interfaces and will not be discussed here. Deliberate updateis an
explicitly initiated transfer of a contiguous block of data from any (readable€) virtual address of the sending
process to a previously imported receive buffer that represents a virtual address range of the receiving
process (see Figure 3). Thevimt _SendDat a* () family of functions are used transfer datain this
fashion. VMM C aso allows data to flow in the opposite direction, thisis accomplished using the

vt _Cet Dat a* () family of functions. Note that VMM C guarantees in-order, reliable delivery of
deliberate update messages.

When a message arrives at its destination, it is transferred directly into the memory of the receiving
process, without interrupting the receiver's CPU. Thusthereis no explicit receive operation in VMMC.

15

VMMC supports user-level buffer management because data transfer is performed between user-level
memory locations. Buffer management is divorced from the data movement mechanism and becomes the
responsibility of the communicating parties. Zero-copy protocols are possible because data transfers occur
directly between applications.

The CPU overhead to send datais very small, only a few user-level instructions are needed for deliberate
update. The model does not impose any CPU overhead to receive data, as there is no explicit receive
operation. CPU involvement in receiving data can be as little as checking a flag; moreover program logic
can be used to reason about what data has already arrived (since messages are delivered in order).

The model as described in this section can be applied to communication between processes executing on
one uniprocessor machine, on separate processors of a shared memory multiprocessor, or between
processes executing on different nodesin alocal area network. In the former two cases, VMMC is a specia
restricted case of shared memory communication with deliberate update added for bulk transfer. The LAN
case is discussed in the next section.

2. Cluster Organization

The VMMC cluster isaset of nodes. Each nodeis identified with a unique node identifier of type
vhmt_node_t . Thecallsvnmt_Sessi onHost s() andvnmt_Al | Host s() are used to obtain the
identification of nodesin the VMMC cluster. Whilevnmc_MyNode() returnstheid for the node of the
caling process. vimc_MyPi d()) returnsthe pid of a calling process. Note that full processidentification
isa(vnmt_node_t, vnmt_pid_t) pair.

User address space is divided in VMM C pages, which sizeisreturned by vimt_PageSi ze() (currently
4096 bytes). Each VMM C page contains integer number of VMM C words. The size of aVMMC word is
returned by vimc_Wor dSi ze() (currently 4 bytes).

3. Receive Buffers

Communication in the VMMC model is based on receive buffers. A receive buffer is a contiguous region of
process virtual memory. Other processes can directly send data to, or fetch data from, a receive buffer.

Each receive buffer isidentified with user-selected buffer id (ui nt 32). A receiver process makes areceive
buffer available to senders with thevimt_Export RecvBuf () call. The buffer id must be unique among
all ids of receive buffers exported by a given process. Receive buffers cannot overlap.

4. Importing Receive Buffers

A sender process has to import a given receive buffer before it can send any data. The import operationis
implemented with the vhmt_| npor t RecvBuf () call. Import succeeds only after the corresponding
export call has been completed for this receive buffer (on the other node). There is aso an asynchronous
version of the import call, vimrc_| npor t RecvBuf Async() , which issues only an import request and
returns immediately returning a handle to the outstanding request. The progress of an asynchronous import
request is verified withvimt_RecvBuf St at us() .

For a given process, ids of exported and imported buffers belong to two digjoint name spaces. As aresult,
one buffer id can be used in both export and import calls. However, for a given process, ids of exported
buffers have to be unique. The full identification of an imported buffer is not its buffer id, but atriple

16

(uint32:bufid, vemmt_node_t, vmmt_pid_t).Asaresultitispossible toimport two buffers
with the same buffer id, if two different processes exported them.

With one export call, a process can export exactly one receive buffer to potentially unlimited number of
processes. With one import call, a process can import only one receive buffer.

We say that a successful import establishes an import-export link between a remote receive buffer and the
local DestSpace. Establishing an import-export mapping requires a trusted third party (operating system
kernel or daemon process) to verify protection. Therefore, creating mappings can be relatively expensive.
However, it should occur infrequently, asimport is required only once for a given receive buffer; afterward
messages can be sent directly from user-level.

5. Destination Proxy Space (DestSpace)

Destination proxy space (DestSpace for short) is an imaginary address space in each sender process; it is
used to represent remote imported receive buffers. An imported remote receive buffer is represented by an
equal size contiguous region in DestSpace. In particular, an application can use pointer arithmetic on
addressin DestSpace. However, DestSpace is not backed by local memory and its addresses do not refer to
local data or code. Instead, they are only used to specify destinations for remote data transfers (i.e. they act
as handles to destination buffers). An addressin DestSpace is translated by VMMC into a destination
machine, process, and virtual address.

6. Data Transfer

Datatransfer can occur from anywhere in a sender’ s virtual memory to a previously imported receive
buffer. The virmc_SendDat a* () family of functions are used to initiate communication on the sender's
side. vhmt_SendDat a() takesasarguments an address in DestSpace, which identifies receive buffer to
be used, alocal address which identifies data to be send, and nwor ds which gives the size of the message.
If no error occurs, vimrc_SendDat a() returns after all data has been sent out to the network.

VMMC aso provides a non-blocking variant of vimt_SendDat a() called

vmt_SendDat aAsync() . The non-blocking send is designed to minimize the CPU overhead required
to start a data transfer. The progress of an asynchronous send request is verified with

vmmt_AsyncSt at us() .

vnmt_Cet Dat a() and vihmt_CGet Dat aAsync() aresimilar except that the direction of data flow is
reversed. That is, a process can fetch data from a remote node.

7. Transfer Redirection

The basic virtual memory-mapped communication model provides protected, user-level communication to
move data directly from a send buffer to areceive buffer without any copying. Since it requires the sender
to know the receiver buffer address, it does not provide good support for connection-oriented high-level
communication APIs.

VMMC includes a mechanism called transfer redirection. The basic ideaisto use adefault, redirectable
receive buffer when a sender does not know the final receive buffer addresses.

17

Redirection isalocal operation affecting only the receiving process. The sender does not have to be aware
of aredirection and always sends data to the default buffer. When the data arrives at the receive side, the
redirection mechanism checks to see whether a redirection address has been posted. If no redirection
address has been posted, the data will be moved to the default buffer. Later, when the receiver posts the
receive buffer address, the data will be copied from the default buffer to the receive buffer, as shown in
Figure 4a.

default
buffer L W=
user | buffer
buffer ||
network B> = WSy
copy
Sender Receiver

(&) A copy takes place when the receiver postsits
buffer address too late

default

user

buffer‘\

network

Sender Receiver

(b) Transfer redirection moves data directly from the
network to the user buffer

Figure 4. Transfer Redirection

If the receiver postsits buffer address before the message arrives, the message will be put into the user
buffer directly from the network without any copying, as shown in Figure 4b. If the receiver postsits
buffer address during message arrival, the message will be partially placed in the default buffer and
partially placed in the posted receive buffer. The redirection mechanism tells the receiver exactly how
much and what part of a message is redirected. When partial redirection occurs, thisinformation allows the
receiver to copy the part of the message that is placed in the default buffer.

There are two calls areceiver uses for transfer redirection on aredirectable buffer. Thefirst is:

(vimt_result _t) res = vimt_Post Redi r (vimt_exphandl e_t buf Handl e,

ui nt 32 redi r O f set,
ui nt 32 numhor ds,
i nt32 *user Buf)

where buf Handl e isahandleto an exported buffer, r edi r Of f set isthe buffer’s word offset from
which to initiate redirection, numAér ds is the number of words to redirect, and user Buf isthe
destination for the redirected data. This call posts atransfer redirection at user level and currently at most
one redirection can be posted for areceive buffer.

The second call is:

18

(vimt_result _t) res= vmmt_EndRedi r (vimt_exphandl e_t buf Handl e,
ui nt 32 *numhor dsPtr,
ui nt 32 *firstWwordorfsetPtr)

where buf Handl e isahandleidentifying an exported redirectable buffer, numAbr dsPt r isthe number
of words that were redirected to the user buffer, and f i r st Wor dOf f set Pt r istheindex of the first
word that was redirected to the user buffer. This call terminates the transfer redirection posted to the
redirectable buffer. If no data has been redirected, the number of redirected wordsis zero. If aredirection
did happen, the redirected data is in the contiguous user address-space area that starts at address

userBuf + *firstWrdOfsetPtr and continuesfor * numAdr dsPt r words (see Figure 5).

* firstWordOffsetPtr=0
* numWordsPtr=0

(i) No Redirection

userBuf
bufhandie s *firstWordOffsetPtr
redirOffset_ oho * numwordsPtr
W
numWords (ii) Partial Redirection
*firstWordOffsetPtr
(8) vmmc_PostRedir() *numwWordsPtr

(iii) Full Redirection

(b) vmmc_EndRedir()

Figure 5. vmmc_PostRedir () and vmmc_EndRedir ()

The transfer redirection mechanism naturally extends the basic communication model and it is very simple.
It is controlled entirely by the receiver side; the sender does not need to know what the actual destination
addressis, nor whether atransfer redirection takes place.

Our implementation allows redirection to happen at most once for each virmt_Post Redi r () . Assoon
as amessage is redirected from a redirectable buffer to a receive buffer, it ends the redirection
automatically. We choose this design to simplify vimt_EndRedi r () . Otherwise, it would have to
return multiple redirection regions.

Transfer redirection is designed for asingle pair of sender and receiver processes. Thisdesign decisionis
based on the fact that most connection-based high-level APIsdeal with asingle pair of sender and receiver
per connection. To avoid interleaving messages from different senders, a redirectable receive buffer should
be imported by just one sender which is easy to enforce when the buffer is exported. If one really needsto
support multiple senders and the communicating processes trust each other, a high-level protocol can be
used to ensure that only one sender sends a message to a redirected buffer at atime.

19

How much dataiis actually redirected depends on the relative timing of vimt_Post Redi r () call and
dataarrival time, assuming vimt_EndRedi r () does not interfere with data redirection. If aredirection
is posted before message arrival, the data will be redirected. If aredirection is posted after data starts
arriving but before its transfer finishes, the remainder of arriving message will be redirected.

For redirectable receive buffers, VMM C provides additional functionality to help user processes figure out
dataarrival. When last chunk of a message arrives, a receive-buffer specific memory location in user space
is updated with the receive buffer offset corresponding to the last word transferred. Thisword index is
available to usersviathevmmt_Dat aEnd() cal.

8. Notifications

When sending a message we have the choice of transferring data only or data.and control. The mechanism
we useto transfer control is called a notification. Notifications are similar to UNIX signals. When a
message with a notification attached arrives at destination receive buffer a user-level notification handler is
invoked after the message data in user memory.

Handlers can be associated with receive buffers during the export operation. Each receive buffer can have
zero or one handler. If a message with a notification arrives at receive buffer with no handler attached, this
notification has no effect. vimt_SendDat aNot i f y() sends message with notification in deliberate
update mode. This call takes the same argumentsasvnmt_SendDat a() .

Each handler has the same function signature (i.e. number and type of arguments). The first argument is the
address of the last word of data transferred by the message that generated this notification, the second
argument is the value of thisword. Since VMMC continues to receive incoming messages between the
arrival of a message with notification and the call to the associated user handler, the data of a notification
message can be overwritten by subseguent messages even before the handler is called. However, VMMC
makes sure that the handler is called and passed the virtual address and value of the last word in the
message that invokes the notification.

VMMC providestwo cals. vt _Bl ockNot i fi cati ons() and

vmt_Unbl ockNot i fi cati ons() to control the delivery of notifications. Blocking notificationsis
useful to ensure consistency of data structures modified by both user-level handlers and main thread of
execution. Blocking notificationsis global, i.e. it affects all receive buffers of a given process. When
notifications are blocked, they are queued by the system. After they are unblocked, they are delivered in-
order to the appropriate user-level handlers. Since there is limited space to store queued notifications, they
should not be blocked for too long.

For each vimt_Bl ockNot i fi cati ons() there should beacall to vime_Unbl ockNot i fi cati ons().
Pairs of these calls can be nested. vimt_Unbl ockNot i fi cati ons() unblocks notifications only if it
iscaled at the first nesting level. In this case, the call returns a positive integer, otherwise it returns zero.
To make sure that notifications are unblocked unconditionally, one can call

vt _Unbl ockNot i fi cati ons() intheloop until it returns positive integer. If notifications are
unblocked, further callsto vimre_Unbl ockNot i fi cat i ons() have no effect.

While user-level notification handler is executing, notifications remain blocked. Notification handler
should not block or wait spinning. Not all VMMC calls can be used from within notification handler. Both
vnmt_Bl ockNoti fi cations() andvmmt_Unbl ockNoti fi cati ons() canbecalled from
within the handler, provided they are paired. However, any attempt to unblock notifications

20

unconditionally by repeated callsto vimt_Unbl ockNot i fi cati ons() will eventualy return an error
(as notifications must remain blocked within a handler).

9. Removal of Import-Export Link

There are two calls provided to undo export and import operations. The importer of a given buffer executes
vt _Uni nport RecvBuf () . Thiscall undoesapreviousvnmt_| npor t RecvBuf () cal by
breaking the connection to the remote receive buffer, and de-allocating the local DestSpace mappinsg.

vmmt_Unexport RecvBuf () undoesapreviouscall to vhmt_Export RecvBuf () . All existing
connections to the buffer are forcibly broken, and the buffer is made unavailable for further connections. In
particular al importers of this buffer can no longer send any data to this buffer after this call completes.

NOTE: these calls are not inplenented.

21

VMMC API Reference

This section describes all of the VMMC callsthat are available to user applications.

VMMC Data Types 23
VMMC Return Vaues ------------------ 24
vmmc_AllHosts() 26
vmmc_AsyncStatus()-------------------- 27
vmmc_BlockNotifications()------------ o8
vmmc_ClearDataEnd()------------------ 29
vmmc_DataEnd() 30
vmmc_EndRedir() 31
vmmc_EqualNodes() -------------------- 32
vmmc_ErrorStr() 33
vmmc_ExportRecvBuUf () ---------------- 34
vmmc_GetData() 35
vmme_GetDataASyNne() ---------------- 36
vmmc_| mportRecvBUf () ---------------- 37
vmmc_ImportRecvBufAsync() -------- 38
vmmc_ImportRecvBuf Status() -------- 39
vmmc_MyHostName()------------------ 40
vmmc_MyNode() 41
vmme_MyPid() 42
vmmc_NameToNode()------------------ 43
vmmc_NodeToName()--------=---=----- 44
vmme_PageSize() 45
vmmc_Parent() 46
vmmc_PostRedir() 47
vmmc_SendData() 48
vmme_SendDataAsync() --------------- 49
vmmc_SendDataAsyncNotify() ------- 50
vmmc_SendDataNotify() --------------- 51
vmmc_SessioNHOStS()------========----- 52
vmmec_SetDebuglL evel () ---------------- 53
vmmc_Spawn() 54
vmmc_UnblockNotifications() -------- 55
vmmc_UnexportRecvBuf() ------------ 56
vmmc_UnimportRecvBuUf() ------------ 57
vmmc_Version() 58
vmmc_WordSize() 59

22

VMMC Data Types

The section gives a brief overview of the various data types needed by the VMM C programmer.

int32:

uint:

uint32:

ulong:

vmmc_callback_t:

vmmc_exphandle_t:

vmmc_imphandle t:

vmmc_perm_t:

vmmc_node t:

vmmc_pid_t:

vmmc_async_handle t:

32-bit integer

unsigned integer

unsigned 32-bit integer

unsigned long integer

specifies the type for auser-level function that can be invoked when data
arrives. The function must be defined as
void (*vmt_cal | back_t) (int32*, int32)

ahandle type to keep track of exported buffers

ahandle type to keep track on imported buffers

atype that specifies an export buffer’s permission

atype used to store node identification

atype used to store VMMC PIDs

atype of handle used to keep track of outstanding asynchronous reguests.

23

VMMC Return Values

Most VMMC calls return the type vmmc_result_t. Negative integer indicates an error, while zero means no
error occurred. Errors can be reported with vmc_Error () .

The following return values are possible:
e vmmc_Success: the call completed successfully (the constant 0)

e vmmcErr_BadAlignment: newly created buffer is not aligned to VMM C word boundary;
or send or destination addressis not aligned to such boundary.

e« vmmcErr_BufAlreadyExists: receive buffer with a given buffer id already as been exported
e« vmmcErr_BadlbufState: imported receive buffer isin bad state

e vmmcErr_BadRbufState: exported receive buffer isin bad state.

e vmmcErr_BadProxyExtension: exported receive buffer isin bad state.

e vmmcErr_BadProxyAddr: proxy address does not belong to imported receive buffer (or

first and last proxy addresses specified by
vimre_SendDat a() do not belong to the same imported

receive buffer).
e vmmcErr_BadSize: number of words to be sent is not positive
e vmmcErr_BadArg: number of
e vmmcErr_NotImplemented: number of words to be sent is not positive

« vmmcErr_UnblockedNotifications: block

« vmmcErr_BlockedNotifications: blocked notifications lead to deadlock. This happens when we
want to unexport a buffer with pending notifications that are

blocked.
e vmmcErr_NoPhysDestSpace: no more destination space
e« vmmcErr_NoVirtDestSpace: no more destination space
e vmmcErr_NoMem: VMMC cannot alocate memory

24

vmmcErr_NoSuchNode:

vmmcErr_NoSuchProcess:

vmmcErr_NotInHandler:

vmmcErr_OverlappedBufs:

vmmcErr_InProgress:

bad nodeid

bad processid

this call cannot be used from within notification handler

new receive buffer would overlap with existing buffer

an asynchronous send or get request is pending

25

vmmc_AllHosts()

Returns the node information of al hostsin the VMMC cluster. Thisincludes hosts that may not be part of
the user’s current session (see vt _Sessi onHost s()).

Synopsis:
(vmmc_result_t) res=vmmc_AllHosts (uint32 *nhosts, vmmc_node _t **hosts)
Parameters:

OUT uint32 *nhosts: returns the number of hosts

OUT vmmc_node _t **hostlds: returnsan array of nhost s host ids

Description:
vt _Al | Host s() returnsall the nodes of the VMMC cluster, where host s pointsto an array of

vnmt_node_t . Thesize of thearray isnhost s. Once a user program is started, nodes should not be
added or deleted. The hostlds array should not be freed or written by user program.

Returns:

e vmt_Success

* negative error code on failure

26

vmmc_AsyncStatus()

Returns the status of an asynchronous request.

Synopsis:
(vmmc_result_t) res=vmmc_AsyncStatus (vmmc_async_handle t *handle)

Parameters:

IN vmmc_async_handle_t *handle: a handle identifying an outstanding asynchronous request

Description:

vnmt_AsyncSt at us() returns the status of an asynchronous request initiated with either
vicce_SendDat aAsync(),vncc_SendDat aAsyncNoti fy() orvimt_CGet Dat aAsync() .

Returns:

« vnmt_Success if the request has completed
e vmtErr_I nProgress if therequest is ill in progress
» other negative error code on failure

27

vmmc_BlockNotifications()

Blocks delivery of notifications.

Synopsis:

(void) vmmc_BlockNotifications()

Parameters:

none

Description:

vnmc_Bl ockNoti fi cati ons() blocksdelivery of notificationsto all receive buffers of acalling
process. Blocked notifications are queued and will be delivered after notifications are unblocked by a
cal tovmrt_Unbl ockNoti fi cati ons().Eachcal tovimt_Bl ockNoti fi cati ons()
should be paired with acall to vt _Unbl ockNot i fi cati ons() . These pairs can be nested, in
which case thelast vt _Unbl ockNot i fi cati ons() (at nesting level one) will unblock
notifications.

Notifications are automatically blocked when natification handler is called.
vmmt_Bl ockNot i fi cati ons() canbe caled from within a notification handler.

Returns:

no return value

28

vmmc_ClearDataEnd|()

Resets the value of the “end-of-data” word index associated with a exported redirectable buffer.

Synopsis:

(void) vmmc_ClearDataEnd(vmmc_exphandle_t bufHandl€)

Parameters:

IN vmmec_exphandle_t bufHandle: a handle identifying an exported redirectable buffer

Description:
VMMC keeps track of the index of the last word sent a redirectable buffer. This word index is relative
to the start of abuffer and can range from zero to one less than the buffer size (in words).

vt _Cl ear Dat aEnd() resetsthisindex tovnmcErr _NoSuchEr r or . Theindex can read with
the function vimre _Dat aEnd() .

Returns:

no return value

29

vmmc_DataEnd()

Returnsthe value of the “end-of-data” word index associated with a redirectable exported buffer.

Synopsis:

(int) res= vmmc_DataEnd(vmmc_exphandle_t bufHandle)

Parameters:

IN vmmec_exphandle_t bufHandle: handle identifying an exported redirectable buffer

Description:

VMMC keeps track of the index of the last word sent to redirectable buffers. Thisword index is
relative to the start of abuffer. vimc_Dat aEnd() returnsthisindex for a specified buffer. If the
buffer has received no data, vnmrc Er r _NoSuchEr r or isreturned. The user can reset the index to
vt Err _NoSuchErr or by usingvmt_Cl ear Dat aEnd() .

Returns:

e vmmtErr_NoSuchEr r or when no data has arrived in the buffer or if the user has reset the
index with acall tovimt _C ear Dat aEnd()
e apositive integer specifying the word index of the buffer where the last word was written to

30

vmmc_EndRedir()

Terminates redirection on a specified redirectable buffer.

Synopsis:
(vmmc_result_t) res=vmmc_EndRedir(vmmc_exphandle_t bufHandle,
uint32 *numwWordsPtr,
uint32 *firstWordOff setPtr)
Par ameters:

IN vmmc_exphandle_t bufHandle: handle identifying an exported redirectable buffer
OUT uint32 *numwWordsPtr: number of words that were redirected to the user buffer

OUT uint32 *firstWordOffsetPtr index of the first word that was redirected to the user buffer

Description:
Terminates redirection on a specified buffer. The last two arguments return the status of the
redirection. It could be that al, some, or none, of the incoming data was redirected. Use

*numAbr dsPtr and*fi rst Wor dOF f set Pt r to determine exactly how much data was
redirected.

Returns:

e« vnmt_Success (theconstant 0)

* negative error code on failure

31

vmmc_EqualNodes|()

Determinesif two VMM C nodes are the same.

Synopsis:
(int) res= vmmc_EqualNodes(vmmc_node_t nodel, vmmc_node_t node2)
Parameters:

IN vmmc_node_t nodel: aVMMC node

IN vmmc_node_t node2: aVMMC node

Description:

Determinesif two VMM C nodes are the same. We supply this function becausevhmt_node_t isan
opaque type. The user should not access any members of vimt_node_t .

Returns:

e 1if the nodes are equal

¢ 0if the nodes are different

32

vmmc_ErrorStr()

Returns a string describing a VMMC error code.

Synopsis:
(char *) str = vmmc_ErrorStr (int errCode)

Parameters:

IN int errCode: error code (negative integer), as returned by other VMMC calls

Description:

Returns a null terminated ASCII string describing aVMMC error code. If the string is needed longer
than the execution of the calling function it should be copied to a user character array. The user must
never free the string returned by this call.

Returns:

a character string describing the VMMC error

33

vmmc_ExportRecvBuf()

Exports a receive buffer.
Synopsis:

(vmmc_result_t) res = vmmc_ExportRecvBuf (int32 *buf,
uint32 nwords,
uint32 rbufid,
vmmc_callback t proc,
uint32 flags,
vmmc_perm_t perm,
vmmc_exphandle t *bufHandle)

Parameters:

IN int32 *buf : address of the receive buffer

IN uint32 nwords: size of the receive buffer in words

IN uint32 rbufid: receive buffer id

IN vmmc_callback_t proc: notification handler, user-level function

or NULL for no handler

IN uint32 flags: specify export characteristics

one of:

BUF_WRI TE_ONLY buffer can only be written

BUF_READ ONLY buffer can only be read

BUF_READWRI TE buffer can be read and written
optionally OR-ed with one of:

BUF_REDI RECTABLE buffer can redirected

BUF_GLOBAL_SPACE buffer is alocated from the global buffer space
IN vmmc_perm_t perm: export permissions (not used yet)

OUT vmmc_exphandle_t *bufHandle: handle that will identify the exported buffer

Description:

Exports receive buffer for importing by senders. Note that this call does not allocate any memory. If
there is no memory allocated to back this buffer, page faults may occur.

The newly created receive buffer isidentified with r buf i d, and occupies memory between buf and
buf + vimt_WordSi ze() *nwords - 1.

buf should be word aligned. Receive buffers cannot overlap.

Returns:

e vmmt_Success

e negative error code on failure

vmmc_GetData()

Fetches data from a remote exported buffer.

Synopsis:

(vmmc_result_t) res=vmmc_GetData(int32 *local DstBuf,
int32 *remoteSrcProxyAddr,
uint32 nwords)

Parameters:

IN int32 *local DstBuf: address of user buffer to place fetched data.
buffer memory must be allocated.

IN int32 *remoteSrcProxyAddr: addressin local DestSpace corresponding to an imported
remote receive buffer

IN int nwords: size of the datain words

Description:

vt _CGet Dat a() fetchesnwor ds from addressr enot eSr cPr oxy Addr and into the local
buffer specified by | ocal Dst Buf . vimrc_Get Dat a() returns after the message has arrived in the
user buffer. vimrc_Get Dat a() isthe compliment of vimt_SendDat a() .

r enot eSr cPr oxyAddr determines the source of the data. Thisisthe receive buffer which proxy in
local DestSpace contains| ocal Dst Buf address. Since each DestSpace address belongs to no more
than one proxy, thisidentification is unique. The data will be put in the receive buffer on destination
node starting from the offset equal to the offset of | ocal Dst Buf from the beginning of this buffer
proxy inlocal DestSpace.

Bothr enot eSr cPr oxyAddr and | ocal Dst Buf should be VMMC word aligned. Both

r enot eSr cPr oxyAddr (source address of the first word) and

r enot eSr cPr oxyAddr +4* nwor ds- 1 (source address of the last word) should belong to the same
imported receive buffer.

vt _CGet Dat a() can be used from within notification handler.

Note: Page faults are possible if r enot eSr cPr oxyAddr or | ocal Dst Buf do not correspond to
valid addresses.

Returns:

e vmt_Success

e negative error code on failure

35

vmmc_GetDataAsync()

Asynchronously gets data from a remote buffer.

Synopsis:
(vmmc_result_t) res=vmmc_GetData (int32 *|ocal DstBuf,
int32 *remoteSrcProxyAddr,
uint32 nwords,
vmmc_async_handle t *handle)
Par ameters:
IN int32 *local DstBuf: address of user buffer to place fetched data,
buffer memory must be alocated
IN int32 *remoteSrcProxyAddr: addressin local DestSpace corresponding to an imported
remote receive buffer
IN int nwords: size of the message in words

OUT vmmc_async_handle_t *handle: handle to the outstanding asynchronous request

Description:

vimt_Cet Dat aAsync() initiates an asynchronous request to retrieve nwor ds from address
r enot eSr cPr oxyAddr and copiesthem to the local buffer specified by | ocal Dst Buf .
vnmt_Cet Dat a() returnsas soon as the request isinitiated.

r enot eSr cPr oxyAddr determines the source of the data. Thisis the receive buffer which proxy in
local DestSpace contains| ocal Dst Buf address. Since each DestSpace address belongs to no more
than one proxy, thisidentification is unique. The data will be put in the receive buffer on destination
node starting from the offset equal to the offset of | ocal Dst Buf from the beginning of this buffer
proxy inlocal DestSpace.

Bothr enot eSr cPr oxyAddr and| ocal Dst Buf should be VMMC word aligned. Both

r enot eSr cPr oxyAddr (source address of the first word) and

r enot eSr cPr oxyAddr +4* nwor ds- 1 (source address of the last word) should belong to the same
imported receive buffer.

vnmt_CGet Dat aAsync() can be used from within notification handler.

Note: Page faults are possibleif r enot eSr cPr oxyAddr or | ocal Dst Buf do not correspond to
valid addresses.

Returns:

e vmmt_Success

e negative error code on failure.

36

vmmc_ImportRecvBuf()

Imports a receive buffer.
Synopsis:
(vmmc_result_t) res=vmmc_ImportRecvBuf (vmmc_node t node,
vmmc_pid_t pid,
uint32 rbufid,
vmmc_imphandle t *handle,
int32 ** proxyBuf,
uint32 *nwords)
Parameters:
IN vmmc_node_t node: address of a node on which exported the receive buffer
IN vmmc_pid_t pid: processid that exported the receive buffer
IN uint32 rbufid: receive buffer id

OUT vmmc_imphandle_t *handle: handle to the imported buffer

OUT int32 **proxyBuf: local address in DestSpace which corresponds to the imported
receive buffer
OUT uint32 *nwords: size of the imported buffer in VMMC words.
Description:

Imports a receive buffer named r buf i d which has been exported by process pi d running on node.

The imported receive buffer is allocated in aregion of destination address space between pr oxy Buf
and pr oxyBuf + vmmt_Wor dSi ze() *nwords - 1.

Returns:

e vmmt_Success

e negative error code on failure

37

vmmc_ImportRecvBufAsync()

I ssues an asynchronous request to import areceive buffer.

Synopsis:
(vmmc_result_t) res=vmmc_ImportRecvBufAsync (vmmc_node t node,
vmmc_pid_t pid,
uint32 rbufid,
vmmc_imphandle_t *handle)
Par ameters:
IN vmmc_node_t node: address of a node on which exported the receive buffer
IN vmmc_pid_t pid: processid that exported the receive buffer
IN uint32 rbufid: receive buffer id

OUT vmmc_imphandle_t *handle: handle to the import buffer request

Description:
I ssues an asynchronous reguest to import areceive buffer named r buf i d which has been exported by
process pi d running on node. The status (and completion) of the request is verified using the
returned handl e and the call vimre_| npor t RecvBuf St at us() .

The imported receive buffer is allocated in aregion of destination address space between pr oxy Buf
and pr oxyBuf + vmmt_Wor dSi ze() *nwords - 1.

Returns:

e vmt_Success

e negative error code on failure.

38

vmmc_ImportRecvBufStatus()

Checks the status of an outstanding asynchronous request to import a receive buffer.

Synopsis:

(vmmc_result_t) res= vmmc_ImportRecvBufStatus (vmmc_imphandle t *handle,
int32 **proxyBuf,
uint32 *nwords)

Parameters:

IN/OUT vmmc_imphandle_t *handle: handle to the import-buffer request

OUT int32 **proxyBuf: local addressin DestSpace which corresponds to the imported
receive buffer
OUT uint32 *nwords: size of the imported buffer in VMMC words.
Description:

Checks the status of an outstanding asynchronous request to import areceive buffer. handl e
identifies the outstanding request. The return result isvnmt _Success if the request completes
successfully. Inthis case, * pr oxyBuf and * nwor ds represent the appropriate values for a buffer
import.

If the asynchronousis not yet complete, the return valueisvimcTErr _| nPr ogr ess.
vimtEr r _BadAsyncHandl e isreturned for invalid handles. Whilevnmc Er r _St at eHandl e
indicates that the application has aready verified the success of this particular request.

The imported receive buffer is allocated in aregion of destination address space between pr oxy Buf
and pr oxyBuf + vmmt_Wor dSi ze() *nwords - 1.

Returns:

vt _Success

vimtErr _|I nProgress if theasynchronous request isnot yet complete

vimtErr _BadAsyncHandl e if thehandl e isnot valid

vimtErr _St al eHandl e if thehandl e has already been checked after completion

negative error code on failure

39

vmmc_MyHostName()

Return the hostname of the machine.

Synopsis:

(char*) res = vmmc_MyHostName()

Parameters:

none

Description:

Returns the hostname of the machine.

Returns:

(char*) hostname string

40

vmmc_MyNode()

Returns the node id of the machine.

Synopsis:

(vmmc_node _t) res=vmmc_MyNode()

Parameters:

none

Description:

Returns the node id of the machine.

Returns:

(vmmc_node _t) anode Id

41

vmmc_MyPid()
Returns the pid of the calling process.

Synopsis:

(vmmc_pid_t) res=vmmc_MyPid()

Parameters:

none

Description:

Returns the pid of the calling process.

Returns:

(vmmc_pid_t) the pid of the calling process

42

vmmc_NameToNode()

Returns the node Id of agiven hostname.

Synopsis:

(vmmc_node _t) res= vmmc_NameToNode(char * hosthame)

Parameters:

IN char *hostname: name of host to convert

Description:

Returns the node Id of a given hostname.

Returns:

(vmmc_node _t) anode Id

43

vmmc_NodeToName()

Returns the name of a given node.

Synopsis:

(char *) res= vmmc_NodeToName (vmmc_node_t node)

Parameters:

IN vmmc_node_t node: the node Id to convert

Description:

Returns the name of a given node.

Returns:

(char *) ahosthame

vmmc_PageSize()

Returns the size of aVMMC page in bytes.

Synopsis:

(int) res= vmmc_PageSize()

Parameters:

none

Description:

Returns the size of aVMMC page in bytes.

Returns:

(int) the size of aVMMC pagein bytes

45

vmmc_Parent()

Returns the pid and node id of the parent process.
Synopsis:

(vmmc_result_t) res=vmmc_Parent (vmmc_node_t *parentNode, vmmc_pid_t *parentPid)
Par ameters:

OUT vmmc_node_t *parentNode: returns node of parent process

OUT vmmc_pid_t *parentPid: returns the pid of a parent process

Description:
vmmc_Parent() returns node and process id of the parent process. This call is guaranteed to work only

if the caller process has been started with vimt _Spawn() . In this case, the parent is the process
which executed vimt_Spawn() .

Returns:

e vmt_Success

e vmmtErr _NoPar ent

46

vmmc_PostRedir()

Activates transfer redirection for an exported buffer.

Synopsis:

(vmmc_result_t) res=vmmc_PostRedir(vmmc_exphandle_ t bufHandle,
uint32 redirOffset,
uint32 numwWords,
int32 *userBuf)

Parameters:

IN vmmc_exphandle_t bufHandle: handle to exported buffer

IN uint32 redirOffset: buffer’ s word offset to initiate redirection

IN uint32 numWords: number of words to redirect

IN int32 *userBuf: destination for the redirected data
Description:

Activates transfer redirection for an exported buffer at the specified r edi r Of f set for numdr ds.
Thereis no guarantee that redirection will take place. VMMC will try to redirect as much of the data as
possible, but how much was actually redirected is reported by the call to vrmc_EndRedi r () .

There can be only one outstanding redirection request per buffer.

Returns:

e vmmt_Success

e negative error code on failure.

47

vmmc_SendData()

Sends a message.

Synopsis:

(vmmc_result_t) res=vmmc_SendData (int32 *local SrcAddr,
int32 *remoteDestProxyAddr,
uint32 nwords)

Par ameters:
IN int32 *local SrcAddr: address of datato send. It can be any address corresponding to
allocated data.
IN int32 *remoteDestProxyAddr: addressin local DestSpace corresponding to an imported
receive buffer.
IN int nwords: size of the message in VMMC words

Description:

Sends a message of nwor ds taken from address| ocal Sr cAddr to remote memory specified by
r enot eDest Pr oxyAddr (obtained by importing abuffer). vimt_SendDat a() returns after the
message has been transferred to the network.

Both| ocal Sr cAddr andr enot eDest Pr oxyAddr must be VMMC word aligned.

Bothr enot eDest ProxyAddr (first word of destination address)

and r enot eDest Pr oxyAddr +4* nwor ds- 1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendData() can be used from within notification handler.

Note: Page faults are possible if | ocal Sr cAddr or r enot eDest Pr oxyAddr do not correspond
to valid addresses.

Returns:

e vmt_Success

e negative error code on failure

48

vmmc_SendDataAsync()

Asynchronously sends a message.
Synopsis:
(vmmc_result_t) res=vmmc_SendDataAsync (int32 *|ocal SrcAddr,
int32 *remoteDestProxyAddr,
uint32 nwords,
vmmc_async_handle t *handle)
Par ameters:
IN int32 *loca SrcAddr: address of datato send. It can be any address corresponding to
allocated data.
IN int32 *remoteDestProxyAddr: addressin local DestSpace corresponding to an imported
receive buffer.
IN int nwords: size of the message in VMMC words

OUT vmmc_async_handle t handle: handle to keep track of the asynchronous send request

Description:

Sends a message of nwor ds taken from address| ocal Sr cAddr to remote memory specified by

r enot eDest Pr oxyAddr (obtained by importing abuffer). vt _SendDat aAsync() returns
immediately upon issuing the data transfer request without waiting for transmission to the network..
vmmt_AsyncSt at us() isused to verify the progress of the data transfer request.

Both| ocal Sr cAddr andr enot eDest Pr oxyAddr must be VMMC word aligned.

Bothr enot eDest ProxyAddr (first word of destination address)

andr enot eDest Pr oxyAddr +4* nwor ds- 1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataAsync() can be used from within notification handler.

Note: Page faults are possible if | ocal Sr cAddr or r enot eDest Pr oxyAddr do not correspond
to valid addresses.

Returns:

e vmt_Success

* negative error code on failure

49

vmmc_SendDataAsyncNotify()

Asynchronously sends a message with a notification.

Synopsis:
(vmmc_result_t) res= vmmc_SendDataAsyncNotify(int32 *|ocal SrcAddr,
int32 *remoteDestProxyAddr,
uint32 nwords,
vmmc_async_handle t *handle)
Par ameters:
IN int32 *loca SrcAddr: address of datato send. It can be any address corresponding to
allocated data.
IN int32 *remoteDestProxyAddr: addressin local DestSpace corresponding to an imported
receive buffer.
IN int nwords: size of the message in VMMC words

OUT vmmc_async_handle t handle: handle to keep track of the asynchronous send request

Description:

Sends a message of nwor ds taken from address| ocal Sr cAddr to remote memory specified by

r enot eDest Pr oxyAddr (obtained by importing a buffer). A notification isinvoked when the data
isreceived. vimt_SendDat aAsyncNot i f y() returnsimmediately upon issuing the data transfer
request without waiting for transmission to the network.. vimrc _Async St at us() isused to verify
the progress of the data transfer request.

Both| ocal SrcAddr andr enpt eDest Pr oxyAddr must be VMMC word aligned.

Both r enot eDest Pr oxyAddr (first word of destination address)

and r enot eDest Pr oxyAddr +4* nwor ds- 1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataA syncNotify() can be used from within notification handler.

Note: Page faults are possibleif | ocal Sr cAddr or r enot eDest Pr oxyAddr do not correspond
to valid addresses.

Returns:

e vmmt_Success

e negative error code on failure

50

vmmec_SendDataNotify()

Sends a message with a notification.

Synopsis:

(vmmc_result_t) res=vmmc_SendData (int32 *local SrcAddr,
int32 *remoteDestProxyAddr,
uint32 nwords)

Par ameters:
IN int32 *local SrcAddr: address of datato send. It can be any address corresponding to
allocated data.
IN int32 *remoteDestProxyAddr: addressin local DestSpace corresponding to an imported
receive buffer.
IN int nwords: size of the message in VMMC words

Description:

Sends a message of nwor ds taken from address| ocal Sr cAddr to remote memory specified by
r enot eDest Pr oxyAddr (obtained by importing a buffer). A notification isinvoked when the data
isreceived. vimt_SendDat a() returns after the message has been transferred to the network.

Both| ocal SrcAddr andr enpt eDest Pr oxyAddr must be VMMC word aigned.

Both r enot eDest Pr oxyAddr (first word of destination address)

andr enot eDest Pr oxyAddr +4* nwor ds- 1 (last word of destination address) must belong to the
same imported receive buffer.

vmmc_SendDataNotify() can be used from within notification handler.

Note: Page faults are possibleif | ocal Sr cAddr or r enot eDest Pr oxyAddr do not correspond
to valid addresses.

Returns:

e vmmt_Success

* negative error code on failure

51

vmmc_SessionHosts()

Returns the names of the hosts that are part of the current user’s session.

Synopsis:
(vmmc_result_t) res=vmmc_SessionHosts (uint32 *nhosts, vmmc_node_t **hostlds)
Parameters:

OUT uint32 *nhosts: returns the number of hosts

OUT vmmc_node _t **hostlds: returns nhosts host ids

Description:

vnmt_Sessi onHost s() returns only the nodes that are part of the current user’s session. Once a
user program is started, nodes should not be added or deleted. The hostlds array should not be freed or
written by user program.

Returns:

e« vnmt_Success (theconstant 0)

e negative error code on failure

52

vmmc_SetDebugLevel()

Sets the amount of debug information that VMM C outputs.

Synopsis:

(void) vmmc_SetDebugL evel (int level)

Parameters:

IN int level: the debugging level

Description:

Sets the amount of debug information that VMM C outputs. Zero (default) turns off all information
while a positive integer produces lots of fun VMM C debug messages.

Returns:

(void) nothing

53

vmmc_Spawn()

Spawns a process.
Synopsis:

(vmmc_result_t) res=vmmc_Spawn (char *execfile,
char **argv,
vmmc_node t node,
vmmc_pid t *pid)

Par ameters:

IN char *execfile: new process will execute the filename. If full path is not given, the
path will be relative to the current working directory of the calling
process.

IN char **argv: list of arguments for new process, starting fromar gv[1] . Last element of

thislist must be NULL.
IN vmmc_node t node: identifies remote machine on which to start new process

OUT vmmc_pid_t *pid: returnsthe pid of the new process.

Description:

vt _Spawn() startsanew process.

Returns:

e vmmt_Success

e negative error code on failure

vmmc_UnblockNotifications()

Conditionally unblocks delivery of notifications.

Synopsis:

(int) res= vmmc_UnblockNotifications()

Parameters:

none

Description:

vnme_Unbl ockNot i fi cati ons() conditionally unblocks delivery of notificationsto all receive
buffers of a calling process. VMMC maintains internal counter which counts blocking level of
notifications. This counter isincremented each timevnmc_Bl ockNot i fi cati ons() iscaled.
When vt _Unbl ockNot i fi cati ons() iscaled, and this counter is positive, it is decremented.
When this counter is zero, acall to vnmt_Unbl ockNot i fi cati ons() hasno effect.
Notifications are unblocked only if this counter reaches zero.

Notifications are automatically blocked when natification handler is called.

vt _Unbl ockNot i fi cati ons() canbe called from within notification handler, but it cannot
actually unblock notifications in such case. If the internal counter is one, and

vt _Unbl ockNot i fi cati ons() iscalled fromthe handler, thiscall returns the error
vnmt_ENot | nHandl er and the counter remains unchanged.

Returns:

e apositive integer indicating the remaining number blocking levels. Notifications are still blocked.
e zero if notifications were successfully unblocked

e negative error code
Example:

The following loop unconditionally unblocks notifications (with error set if it is called inside handler):

i nt status;
while (status = vnmt_Unbl ockNotifications()) == 0)

if (status < 0)
vhmt_Error(status, "unconditional unblocking");

55

vmmc_UnexportRecvBuf()

Unexports areceive buffer.

Synopsis:

(vmmc_result_t) res=vmmc_UnexportRecvBuf(vmmc_exphandle_t handle)

Parameters:

IN vmmc_exphandle_t handle: handle that corresponds to an exported receive buffer

Description:

Unexports the receive buffer specified by handl e.

Returns:

e vmt_Success

* negative error code on failure

56

vmmc_UnimportRecvBuf()

Unimports a receive buffer.

Synopsis:

(vmmc_result_t) res=vmmc_UnimportRecvBuf (vmmc_imphandle_t handle)

Parameters:

IN vmmc_imphandle_t handle: handle that corresponds to an imported receive buffer

Description:

Unimports the receive buffer specified by handl e.

Returns:

e vmt_Success

* negative error code on failure

57

vmmc_Version()

Returns the mgjor and minor VMMC version numbers.

Synopsis:

(void) vmmc_Version (uint32 *major, uint32 *minor)

Par ameters:
OUT uint32 *mgjor: returnsthe VMM C version major number

OUT uint32 *minor: returnsthe VMM C version minor number

Description:

Returns the major and minor VMM C version numbers.

Returns:

(void) nothing

58

vmmc_WordSize()

Returns the number of bytesin aVMMC word.

Synopsis:

(int) res= vmmc_WordSize()

Parameters:

none

Description:

Returns the number of bytesin aVMMC word.

Returns:

(int) the number of bytesinaVMMC word

59

| ndex

A

Administrator’' s GUIde.........ccccoeeevereieeeeieeene 7
C

CFGVMMC.EXEoooiiiiiienie e 10
Changesin Version 2.0.......cccveevveeeveeneesieennnns 6
Cluster Organization...........cccceevvevveeveseesenneens 16
Cluster Service and Utilities.........c.ccoceveereeennen. 8
D

Data Transfercoevenerieeeeree e 17
Data TYPES.....ccooeveeiieiirieree e 23
Destination Proxy Space (DestSpace) 17
E

Enabling Interactive JObS.........ccccooovverenieeinenns 8
I

Importing Receive BUFfers..........ccoceevvinenennene. 16
Installingthe VMMC SDK.......cccoooiiiiineninens 9
K

K@ Lo 1
N

NOLIfICATONS ..o 20
0]

OULPUL LOGYING.....eveneererieeeeerieeeie e 12
P

Princeton UNiVErSityc.ccoeeevereienenec e 5
R

Receive BUFfErscoeeeeceeceereeeeceeee 16
Return Values........cooovviirieeee e 24
Running VMM C Programs..........c.ccoeeevereeene 11
S

Sample VMMC Programs.........cccceeeveeeenieennen. 13
SHRIMP Projectccceveeveneienenineneeeeeee 5
Starting and Stopping VMMC.........cccoeevevvenns 7
System LOg FileSococvvirciricieenceee 8
T

Transfer Redirectioncccoocevveveieiceieneene. 17

60

U

USEr' SGUIAEeoeeeieee e 9

Using CFGVMMC.EXE...See CFGVMMC.EXE

using the CFGVMMC utilitySee Running
VMMC Programs

\Y

VMMC OVEIVIEW ... 15
VMMC Session Creation and Déeletion.............. 9
VMMC System Account and Network Share.... 7
VMMC System Root Directorycc.ccceeveneee. 7
VMMC_AITHOSIS() e 26
VMMC_ASYNCSEALUS() .. 27
vmmc_BlockNotifications()cccceeverenienene 28
vmmc_ClearDataEnd()cocovveevrerenercnienens 29
vMMC_DataENd()cvevereerieerienieereseeee e 30
vmmc_ENdRedir() ...cooovvveeveereeceeeeeies 31
vmmc_EqualNodes()cccoevevveveeciniesieniens 32
VMMC_ErrorStr()....occeeeeeeveeeveese e eeeeeesieenieens 33
vmmc_EXpPOortRecVBUF()......ccevvveeiveireieniiesiens 34
vMMC_GetData()ccvveveveeveere e 35
vmMMC_GetDataASYNC() .o.veverveeeerienieerie e 36
vmmc_ImportReCVBUF()........ccceevrerenirienne 37
vmmc_ImportRecvBUf ASyNnc().........ccoevervenne 38
vmmc_I mportRecvBuf Status()cceervenene 39
vmmc_MYHOSINAME()oevvviieiriieeeciee 40
VMMC_MYNOAE()....cveeereiieeriieeeeece e 41
VMMC_MYPIA() .ooveeeeiecee e 42
vmmc_NameToNOdE()cccevvrvveiereienieniens 43
vmmc_NodeToName()cocvevveveeiereiesienieens 44
VMMC_PageSiZe()cvvveveveeieeieeie e eeesieenieens 45
VMMC_Parent()......cceeeveeeveeieerrese e eeeseenieens 46
vmmMC_PoStReAIr()ocveveeveerr e 47
vMMC_SendDatal)ccvverveererieirenieeeeseeeee 48
vmmc_SendDataASYNC() ...c.ceverveererienerenienenne 49
vmmc_SendDataAsyncNOotify()......c.cccveervenee 50
vmmc_SendDataNOotify()ccoveevrererericnienen 51
VMMC_SeSSIONHOSES() ...vevveververeerienieieeseeene 52
vmmc_SetDebugLevel ()ccoovveerenenncnien 53
VIMMC_SPAWN() vevveeieiee e se e e eee e seeeseeens 54
vmmc_UnblockNotifications()cccceevereenns 55
vmmc_UnexportRecvBUF()........cccvevvveverieninns 56
vmmc_UnimportRecvBUF()coevvvevveieiienies 57
VIMMC_VErSION() c.vveveeieecee e eee e 58
VMMC_WOrdSiZe()covvvireiriniereneeeeeeene 59

